This study explored determinants of family support that young renter households received to afford their housing costs. Microdata set of the 2014 Korea Housing Survey was used as secondary data for the study. Total 1,752,899 households headed by persons between 20 and 34 years of age and whose rental type was either Jeon-se or monthly rental with deposit in private rental units were selected as study subjects. For the data analysis, a series of discriminant analysis was conducted using IBM SPSS 21.0. Major findings were as follows. (1) Among the subjects, 28.2% were found to receive financial support from parents or other relatives. (2) To see the discriminant analysis results, a linear combination of seven household and housing characteristics (householder's gender, whether or not the householder worked in the previous week, whether or not the householders have a spouse, tenure type, structure type, location and deposit amount) could explain 44.6% of variance in young renter households' receipt of family support with a prediction accuracy of 77.2%. (3) To summarize the final discriminant model, Jeon-se renter households in location other than Incheon or Gyeonggi Province living in a unit in structure other than multifamily structure headed by younger householders that did not worked previous week or without spouse; with a greater deposit had the maximum tendency to receive family support to pay rental costs.
The Journal of Korean Academic Society of Nursing Education
/
v.23
no.4
/
pp.389-397
/
2017
Purpose: This study was conducted to examine awareness of biomedical ethics, and to identify affecting factors of the awareness of biomedical ethics in nursing students. Methods: The subjects consisted of 266 nursing students their third and fourth years of study. The data were collected from October to December, 2015 by self-report using questionnaires. Data analysis was performed using SPSS/WIN 18.0, descriptive statistics, t-test, ANOVA, $Scheff{\acute{e}}$ test, Pearson correlation coefficient, and multiple regression analysis. Results: The mean score of the awareness of biomedical ethics was $2.81{\pm}0.22$, perception of death was $3.15{\pm}0.36$, and knowledge of brain death, organ donation, and organ transplant was $12.12{\pm}3.02$. The prediction factors of awareness of biomedical ethics were gender (${\beta}=.29$, p<.001), participation in religious activity (${\beta}=.23$, p=.015), and perception of death (${\beta}=.20$, p=.016). The explanation power was 17.1%. Conclusion: These results showed that education about biomedical ethics is necessary for nursing students, and the development of biomedical ethics educational programs should reflect affecting factors.
A group of digital human models with various sizes which properly represents a population under consideration is needed in the design process of an ergonomic product in virtual environment. The present study proposes a two-step method which produces a representative group of human models in terms of stature and weight. The proposed method first generates a designated number of pairs of stature and weight within an accommodation range from the bivariate normal distribution of stature and weight of the target population. Then, from each pair of stature and weight, the method determines the sizes of body segments by using 'hierarchical' regression models and corresponding prediction distributions of individual values. The suggested method was applied to the 1988 US Army anthropometric survey data and implemented to a web-based system which generates a representative group of human models for the following parameters: nationality, gender, accommodation percentage, and number of human models.
Proceedings of the Korea Information Processing Society Conference
/
2016.04a
/
pp.588-590
/
2016
사용자의 성별은 기본적이면서도 중요한 마케팅 데이터다. 그러나 최근에는 개인정보보호 강화 추세로, 회원가입 시 성별이나 나이 등의 세부 정보를 입력하지 않는 간편 가입이 많아졌다. 이러한 입력되지 않은 정보 추출을 위해 성별 예측 연구의 필요성이 증가되었다. 성별이 입력된 사용자의 정보를 바탕으로 성별이 입력되지 않은 사용자의 성별을 예측하는 기존 연구가 다양한 방법으로 진행되어왔고, 우수한 식별이 가능한 기법들은 이진분류기인 SVM을 기반으로 한 연구가 다수 존재한다. 그러나 SVM 알고리즘은 이진 분류만 가능하기 때문에 성별예측에 대한 정확률은 알 수가 없다. 성별예측의 정확률을 활용하면 부정확한 분류를 예방할 수 있으며 상품추천의 가중치로 사용 될 수 있다. 본 연구는 확률을 기반으로 하여 정확률을 추론 가능한 나이브 베이지안을 응용한다. 그리고 데이터 집합 사례를 균형있게 늘려주는 SMOTE기법을 이용해 클래스 불균형 문제를 개선했으며 또한 성별 예측의 특성에 맞게 노이즈를 제거하고, 성별 분류에 확정적인 아이템에 가중치를 적용했다. 더불어 제안 방법을 실제 데이터에 적용시켜 우수성을 입증하였다.
This paper explores variables that influence the prediction of OTT service experience and free(AVOD)/ paid(SVOD) service use. Research results showed that five variables such as gender, age, personal income, household composition, and e-commerce use experience had a significant impact on identifying OTT service experience and whether to use free or paid services. Also, it was found that the probability of using SVOD increases as they prefer news and drama genres and use OTT services for more time. In summary, those who are relatively young, have a high personal income, and are more adapted to digital environments such as e-commerce are more likely to use SVOD.
International Journal of Advanced Culture Technology
/
v.10
no.2
/
pp.28-33
/
2022
This study aims to investigate factors that affect elderly poverty based on a comprehensive and universal perspective, suggesting some alternatives for improving the poverty rate of the elderly. The comprehensive and universal approach to the poverty of the aged that this study attempts can give a better understanding of the elderly poverty beyond the contribution of the existing literature, with the research model including individual, family, labor, and income factors as the causes of old-age poverty from the comprehensive and universal perspective on the causes of poverty of the elderly. In addition, the study attempts to input variants of variables into the equation for the causes of elderly poverty by using panel data from the 8th Korean Retirement and Income Study. This study employs decision tree analysis to determine the cause of the poverty of the elderly using CHAID. The decision tree analysis shows that the most vital variable affecting elderly poverty is making income. For the poor elderly without earned income, public pensions, educational careers, and residential areas influence elderly poverty, but for the poor elderly with earned income, wage earners and gender are variables that affect poverty. This study suggests some alternatives to improve the poverty rate of the aged. The government should create a better working environment such as senior re-employment for old people to be able to participate in economic activities, improve public pension or social security for workers with unfavorable conditions for public security of old age, and give companies that create employment of the aged diverse incentives.
This study aimed to specify Vessel Traffic System(VTS) operators' situational awareness(SA) tasks and examine differences in subjective ratings for three levels of SA. Data for relative frequencies of SA tasks were collected by using direct in field observation. Subjective rating scores were obtained using a questionnaire method and compared in terms of VTS operator's gender and length of service career. The results are as follows. First, it was found that the VTS operators perform information perception task elements more frequently than those for information integration and prediction. Second, VTS operators tended to show subjectively lower evaluation scores for prediction than information perception or integration. Third, male VTS operators rated their SA ability higher than females. Fourth, the male VTS operators more than 15 years of career service showed higher subjective rating scores than those with under 5 years of service. Female VTS operators with different levels of career service showed a similar level of subjective rating scores. These results suggest that the frequency of SA related tasks and subjective SA evaluation can differ in terms of SA levels and individual differences.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.11
/
pp.126-136
/
2018
The purpose of this study was to develop a severity-adjustment model for predicting mortality in acute stroke patients using machine learning. Using the Korean National Hospital Discharge In-depth Injury Survey from 2006 to 2015, the study population with disease code I60-I63 (KCD 7) were extracted for further analysis. Three tools were used for the severity-adjustment of comorbidity: the Charlson Comorbidity Index (CCI), the Elixhauser comorbidity index (ECI), and the Clinical Classification Software (CCS). The severity-adjustment models for mortality prediction in patients with acute stroke were developed using logistic regression, decision tree, neural network, and support vector machine methods. The most common comorbid disease in stroke patients were hypertension, uncomplicated (43.8%) in the ECI, and essential hypertension (43.9%) in the CCS. Among the CCI, ECI, and CCS, CCS had the highest AUC value. CCS was confirmed as the best severity correction tool. In addition, the AUC values for variables of CCS including main diagnosis, gender, age, hospitalization route, and existence of surgery were 0.808 for the logistic regression analysis, 0.785 for the decision tree, 0.809 for the neural network and 0.830 for the support vector machine. Therefore, the best predictive power was achieved by the support vector machine technique. The results of this study can be used in the establishment of health policy in the future.
This study analyzes the Korean professional volleyball league and predict match outcomes using popular machine learning classification methods. Match data from the 2012/2013 to 2022/2023 seasons for both male and female leagues were collected, including match details. Two different data structures were applied to the models: Separating matches results into two teams and performance differentials between the home and away teams. These two data structures were applied to construct a total of four predictive models, encompassing both male and female leagues. As specific variable values used in the models are unavailable before the end of matches, the results of the most recent 3 to 4 matches, up until just before today's match, were preprocessed and utilized as variables. Logistc Regrssion, Decision Tree, Bagging, Random Forest, Xgboost, Adaboost, and Light GBM, were employed for classification, and the model employing Random Forest showed the highest predictive performance. The results indicated that while significant variables varied by gender and data structure, set success rate, blocking points scored, and the number of faults were consistently crucial. Notably, our win-loss prediction model's distinctiveness lies in its ability to provide pre-match forecasts rather than post-event predictions.
The purpose of this study was to produce the regression equation from non-exercise $VO_{2max}$ of healthy young adults and to develop a maximal oxygen consumption ($VO_{2max}$) regression model. This model was based on heart rate non-exercise predictor variables (rest heart rate, maximal heart rate/rest heart rate), as an extra addition to the general regression which can reflect an individual's inherent or acquired cardiorespiratory fitness. The subjects were 101 healthy young adults aged 19 to 35 years. Exercise testing was measured by using a Balke protocol for treadmill and indirect calorimetry. The prediction equation was analyzed by using stepwise multiple regression procedures. The mean of $VO_{2max}$ was $39.02{\pm}6.72\;m{\ell}/kg/min$ (mean${\pm}$SD). The greatest variable correlated to $VO_{2max}$ was %fat. The predictor variable used in the non-exercise $VO_{2max}$ included %fat, gender, habitual physical activity and $HR_{max}/HR_{rest}$. The non-exercise $VO_{2max}$ estimation was as follows: $VO_{2max}$($m{\ell}/kg/min$)=55.58-.41(%fat)+.59(physical activity rating)-2.69($HR_{max}/HR_{rest}$)-5.36 (male=0, female=1); (R=.85, SEE=3.64, R2=.72: including heart rate variable); $VO_{2max}$($m{\ell}/kg/min$)=48.47-.41(%fat)+.45(physical activity rating)-5.12 (male=0, female=1); (R=.84, SEE=3.74, R2=.70: with the exception of heart rate variable). As an added heart rate variable, there was only a 2% coefficient of determination improved. Therefore, these results demonstrated that heart rate variable correlation with a non-exercise regression model was very low. In conclusion, for healthy young korean adults, those variables that can affect non-exercise $VO_{2max}$ estimation turned out to be only % fat, gender, and physical activity. We suggest that further research of predictor variables for non-exercise $VO_{2max}$ is necessary for different patient groups who cannot perform maximal exercise or submaximal exercise.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.