• Title/Summary/Keyword: gelatin hydrolysates

Search Result 25, Processing Time 0.017 seconds

Biological activity of peptides purified from fish skin hydrolysates

  • Abuine, Racheal;Rathnayake, Anuruddhika Udayangani;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.5
    • /
    • pp.10.1-10.14
    • /
    • 2019
  • Fish skin waste accounts for part of the solid waste generated from seafood processing. Utilization of fish skin by bioconversion into high-grade products would potentially reduce pollution and economic cost associated with treating fish processing waste. Fish skin is an abundant supply of gelatin and collagen which can be hydrolyzed to produce bioactive peptides of 2-20 amino acid sequences. Bioactivity of peptides purified from fish skin includes a range of activities such as antihypertensive, anti-oxidative, antimicrobial, neuroprotection, antihyperglycemic, and anti-aging. Fish skin acts as a physical barrier and chemical barrier through antimicrobial peptide innate immune action and other functional peptides. Small peptides have been demonstrated to possess biological activities which are based on their amino acid composition and sequence. Fish skin-derived peptides contain a high content of hydrophobic amino acids which contribute to the antioxidant and angiotensin-converting enzyme inhibitory activity. The peptide-specific composition and sequence discussed in this review can be potentially utilized in the development of pharmaceutical and nutraceutical products.

Isolation and Charaterization of Bioactive Peptides from Hwangtae (yellowish dried Alaska pollack) Protein Hydrolysate

  • Cho, San-Soon;Lee, Hyo-Ku;Yu, Chang-Yeon;Kim, Myong-Jo;Seong, Eun-Soo;Ghimire, Bimal Kumar;Son, Eun-Hwa;Choung, Myoung-Gun;Lim, Jung-Dae
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.3
    • /
    • pp.196-203
    • /
    • 2008
  • Hwangtae, dried Alaska pollack, is a major storage product in the fish processing industry. Hwangtae is prepared by removing the internal organs and drying outdoors during the cold witner months by allowing it to thaw during the daytime and re-freeze at night under sub-zero ($-10^{\circ}C$) conditions and gradually dry from December until the next April for around 5 months from Myungtae. In this study, ground Hwangtae was hydrolyzed using two proteolytic enzymes (pepsin and alcalase) which produced five soluble active peptides from Hwangtae (yellowish dried Pollack, Theragra chalcogramma) protein. Two different peptides with strong antioxidative activity were isolated from the hydrolysate using consecutive chromatographic methods of Sephadex G-25 gel, ion-exchange chromatography on a Sepharose-Sephadex C-25 gel, and high-performance liquid chromatography. The isolated peptides, APO1 and APO2, were composed of 16 and 13 amino acid residues, respectively. Both peptides contained a Gly residue at the C-terminus and the repeating motif Gly-Pro-Hyp. The peptide with a molecular weight less than 1,000 Daltons (APACE) obtained from enzymatic hydrolysates of Hwangtae exhibited the highest ACE inhibitory activity. The APACE peptides was composed of 4 amino acid residues (Gly-Leu-Leu-Pro). These results suggest that Hwangtae hydrolysates could be a good source of peptides with ACE inhibitory activity. Biochemical analysis indicated that two 70 kDa peptides (APG1 and APG2) isolated from the hydrolysate had gelatinoytic activity, which was shown to be a calcium dependent protease type as showed by gelatin SDS PAGE.

Characterization of a Collagenase-1 Inhibitory Peptide Purified from Skate Dipturus chilensis Skin (홍어류(Dipturus chilensis) 껍질로부터 분리 정제된 collagenase-1 저해 펩타이드의 특성)

  • Park, Sung-Ha;Lee, Jung-Kwon;Jeon, Joong-Kyun;Byun, Hee-Guk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.5
    • /
    • pp.456-463
    • /
    • 2011
  • We attempted to isolate a collagenase-1 inhibitory peptide from skate Dipturus chilensis skin protein. The protein from skate skin was digested by various enzymes (alcalase, ${\alpha}$-chymotrypsin, neutrase, papain, pepsin, and trypsin) to produce a collagenase-1 inhibitory peptide. The collagenase-1 inhibitory activity of the peptides obtained was measured by gelatin digestion assay. Among the six hydrolysates, pepsin hydrolysate exhibited the highest collagenase-1 inhibitory activity. The peptide showing strong collagenase-1 inhibitory activity was purified by Sephadex G-25 gel chromatography and HPLC using an octadecylsilyls (ODS) column. The amino acid sequence of purified collagenase-1 inhibitory peptide was identified to be Asn-Leu-Asp-Val -Leu-Glu-Val-Phe (961 Da) by quadrupole time of flight (Q-TOF) and electrospray ionization mass spectrometry (ESI-MS) mass spectroscopy. The $IC_{50}$ value of purified peptide was 87.0 ${\mu}M$. Moreover, the peptide did not exhibit cytotoxic effects on human dermal fibroblast cell lines.

Production and Characterization of an Anti-Angiogenic Agent front Saccharomyces cerevisiae K-7

  • Jeong, Seung-Chan;Lee, Dae-Hyoung;Lee, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1904-1911
    • /
    • 2006
  • The cell-free extracts of 250 yeasts were screened for their in vitro anti-angiogenic activity, to develop a new cancer metastasis inhibitor. Saccharomyces cerevisiae K-7 was selected as the producer of the anti-angiogenic agent, because it had the highest anti-angiogenic activity. The anti-angiogenic agent was produced maximally from hydrolysates of Saccharomyces cerevisiae K-7, when the yeast was cultured in yeast extract-peptone-dextrose medium at 30$^{\circ}C$ for 24 h, and cell-free extracts were than digested with pepsin for 4 h at 37$^{\circ}C$. The anti-angiogenic agent was further purified by ultrafiltration, Sephadex G-25 gel permeation chromatography and reverse-phase HPLC, and the anti-angiogenic activity of the final purified preparation was 72.7% at 10 $\mu$M/egg. The purified anti-angiogenic agent was found to originate from the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) molecule of Saccharomyces cerevisiae K-7, and its peptide sequence was Val-Ser-Trp-Tyr-Asp-Asn-Glu-Tyr-Gly-Tyr-Ser-Thr-Arg-Val-Val-Asp. In the MTT assay, the shape of the HT-l 080 cell was clearly changed to a circular type at 0.2 mM purified anti-angiogenic agent. This result indicated that the growth of the HT-I080 cell was significantly inhibited at 0.2 mM of the purified anti-angiogenic agent. The MMP activity of the treated HT-l080 cells was not affected, evidenced by the gelatin zymography, indicating that the anti-angiogenic mechanism of the purified anti-angiogenic agent is not mediated through MMP activity.

Enzymatic Hydrolysis of Yellowfin Sole Skin Gelatin in a Continuous Hollow Fiber Membrane Reactor (연속식 중공사막 반응기를 이용한 각시가자미피 젤라틴의 가수분해)

  • KIM Se-Kwon;BYUN Hee-Guk;KANG Tae-Jung;SONG Dae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.120-132
    • /
    • 1993
  • A continuous hollow fiber membrane reactor(CHFMR) was developed and optimized for the production of yellowfin sole(Limanda aspera) skin gelatin hydrolysates using trypsin. The results were summerized as follows: The $K_m$ value of the CHFMR was 2.4 times higher than that of the batch reactor, indicating reduced enzyme affinity for the substrate. The $K_2$ value of the CHFMR was 8.5 times lower than that of the batch process, showing a significant reduction in trypsin activity in the CHFMR. The optimum operating conditions for the CHFMR process were $55^{\circ}C$, pH 9.0, flux 7.79 ml/min, residence time 77min, and trypsin to substrate ratio, 0.01(w/w) After operating for 60min under the above conditions, $79\%$ of the total amount of initial gelatin was hydrolysed. Enzyme leakage was observed through the 10,000 MWCO membrane after the 20min of reactor operation, while none occurred after 5hr. Total enzyme leakage was about $12.95\%$ at $55^{\circ}C$ for 5hrs. However, there was no apparent correlation between enzyme leakage and substrate hydrolysis. The membrane has a significant effect on trypsin activity loss for 60min of the CHFMR operation. The CHFMR operating with the membrane lost $34\%$ of the initial activity versus a $23\%$ loss of activity after 3hr in the continuous reactor lacking the hollow fiber membrane. The measurement of fouling property showed that relative flux reduction was $91\%$ and flux recover rate was $92\%$ at $10\%$ substrate solution. The productivity(378.85mg product/mg enzyme) of the CHFMR was more than 4 times higher than that of the batch reactor at $55^{\circ}C$.

  • PDF