• Title/Summary/Keyword: gel pore

Search Result 254, Processing Time 0.029 seconds

Preparation of Polymer Gel Electrolyte for EDLCs using P(VdF-co-HFP)/PVP (P(VdF-co-HFP)/PVP를 이용한 EDLC용 고분자 겔 전해질의 제조)

  • Jung, Hyun-Chul;Jang, In-Young;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.243-249
    • /
    • 2006
  • Porous polymer gel electrolytes (PGEs) based on poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) as a polymer matrix and polyvinylpyrolidone (PVP) as a pore-forming agent were prepared and electrochemical properties were investigated for an electric double layer capacitor (EDLC) in order to increase a permeability of an electrolyte into the PGE. Propylene carbonate (PC) and ethylene carbonate (EC) as plasticizers, and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a supporting salt for the PGE were used. EDLC unit cells were assembled with the PGE and electrode comprising BP-20 and MSP-20 as activated carbon powders, Super P as a conducting agent, and P(VdF-co-HFP)/PVP as a mixed binder. Ion conductivity of PGEs increased with an increased PVP content and was the best at 7 wt% PVP, whereas electrochemical characteristics such as AC-ESR of unit cell were better in 3 wt%. And electrochemical characteristics of the unit cell with PGE were the best at a 33 : 33 weight ratio of PC to EC. Specific capacitance of a mixed plasticizer system of PE and EC was higher than that of pure PC. Ion conductivity of PGEs with a film thickness of $20{\mu}m$ was higher, but electrochemical characteristics of unit cells were higher for a $50{\mu}m$ membrane thickness. Also, the unit cell has shown the highest capacitance of 31.41 F/g and more stable electrochemical performance when PGE and electrode were hot pressed. Consequently, the optimum composition ratio of PGE for EDLCs was 23 : 66 : 11 wt% such as P(VdF-co-HFP) : PVP = 20 : 3 wt% and PC : EC = 44 : 22 wt%. In this case, $3.17{\times}10^{-3}S/cm$ of ion conductivity was achieved at the $50{\mu}m$ thickness of PGE for EDLCs. And the electrochemical characteristics of unit cells were $2.69{\Omega}$ of DC-ESR, 28 F/g of specific capacitance, and 100% of coulombic efficiency.

3-Dimensional ${\mu}m$-Scale Pore Structures of Porous Earth Materials: NMR Micro-imaging Study (지구물질의 마이크로미터 단위의 삼차원 공극 구조 규명: 핵자기공명 현미영상 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2009
  • We explore the effect of particle shape and size on 3-dimensional (3D) network and pore structure of porous earth materials composed of glass beads and silica gel using NMR micro-imaging in order to gain better insights into relationship between structure and the corresponding hydrologic and seismological properties. The 3D micro-imaging data for the model porous networks show that the specific surface area, porosity, and permeability range from 2.5 to $9.6\;mm^2/mm^3$, from 0.21 to 0.38, and from 11.6 to 892.3 D (Darcy), respectively, which are typical values for unconsolidated sands. The relationships among specific surface area, porosity, and permeability of the porous media are relatively well explained with the Kozeny equation. Cube counting fractal dimension analysis shows that fractal dimension increases from ~2.5-2.6 to 3.0 with increasing specific surface area from 2.5 to $9.6\;mm^2/mm^3$, with the data also suggesting the effect of porosity. Specific surface area, porosity, permeability, and cube counting fractal dimension for the natural mongolian sandstone are $0.33\;mm^2/mm^3$, 0.017, 30.9 mD, and 1.59, respectively. The current results highlight that NMR micro-imaging, together with detailed statistical analyses can be useful to characterize 3D pore structures of various porous earth materials and be potentially effective in accounting for transport properties and seismic wave velocity and attenuation of diverse porous media in earth crust and interiors.

Development of the DNA Sequencing Chip with Nano Pillar Array using Injection Molding (Nano Pillar Array 사출성형을 이용한 DNA 분리 칩 개발)

  • Kim S.K.;Choi D.S.;Yoo Y.E.;Je T.J.;Kim T.H.;Whang K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1206-1209
    • /
    • 2005
  • In recent, injection molding process for features in sub-micron scale is under active development as patterning nano-scale features, which can provide the master or stamp for molding, and becomes available around the world. Injection molding has been one of the most efficient processes for mass production of the plastic product, and this process is already applied to nano-technology products successfully such as optical storage media like DVD or BD which is a large area plastic thin substrate with nano-scale features on its surface. Bio chip for like DNA sequencing may be another application of this plastic substrate. The DNA can be sequenced using order of 100 nm pore structure when making the DNA flow through the pore structure. Agarose gel and silicon based chip have been used to sequence the DNA, but injection molded plastic chip may have benefit in terms of cost. This plastic DNA sequencing chip has plenty of pillars in order of 100 nm in diameter on the substrate. When the usual features in case of DVD or BD have very low aspect ratio, even less than 0.5, but the DNA chip will have relatively high aspect ratio of about 2. It is not easy to injection mold the large area thin substrate with sub-micron features on its surface due to the characteristics of the molding process and it becomes much more difficult when the aspect ratio of the features becomes high. We investigated the effect of the molding parameters for injection molding with high aspect ratio nano-scale features and injection molded some plastic DNA sequencing chips. We also fabricated PR masters and Ni stamps of the DNA chip to be used for molding

  • PDF

Electrochemical Characterization of Cobalt Oxide Xerogel Electrode for Supercapacitor (수퍼커패시터용 산화코발트 건조겔전극의 전기화학적 특성)

  • Kim Han-Joo;Shin Dal-Woo;Kim Yong-Chul;Kim Seong-Ho;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.146-151
    • /
    • 2000
  • So fine cobalt oxide xerogel powders were prepared by using a unique solution chemistry associated with the sol-gel process. The effect of thermal treatment on the crystalinity, particle structure, and corresponding electrochemical properties of the resulting xerogel remained amorphous as $Co(OH)_2$ up to $160^{\circ}C$ With an increase in the temperature above $200^{\circ}C$, both the surface area and pore volume decreased sharply, because the amorphous $Co(OH)_2$ decomposed to form CoO that was subsequently oxidized to form crystalline Co304. In addition, the changes in the crystallinity, and particle structure all had significant but coupled effects on the electrochemical properties of the xerogels. A maximum capacitance of 192F1g was obtained for an electrode prepared with the $CoO_x$ Xerogel calcined at$150^{\circ}C$, which was consistent with the maxima exhibited in both the surface area and pore volume. This capacitance was attributed solely to a surface redox mechanism.

Studies on Microbial Penicillin Amidase (Part 6) Immobilization of Penicillin Amidase from Bacillus megaterium by Adsorption and Acrylamide Gel Entrappment (미생물 페니실린 아미다제에 관한 연구 (제 6 보) 흡착효소의 아크릴아마이드젤 포괄방법에 의한 Bacillus megaterium의 변이주가 생산하는 페니실린 아미다제의 고정화에 관한 연구)

  • Seong, Baik-Lin;Son, Hyeung-Jin;Mheen, Tae-Ick;Moon H. Han
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 1981
  • Penicillin amidase of Bacillus megaterium was recovered from the fermentation broth by adsorption on celite and immobilized by entrapping the adsorbed enzyme in acrylamide gel. The operational stability in column reactor was greatly increased by entrappment as compared with that of without entrappment. The optimum pH of the immobilized enzyme was 8.7 with broader activity profile than that of the free enzyme, while the most stable pH range appeared to be between pH 7.5 and 8.0. The optimum temperature was shifted to 5$0^{\circ}C$ from 45$^{\circ}C$ for the soluble enzyme. The values of Km and the inhibition constants for 6-APA( $K_{ia}$ ) and phenylacetic acid ( $K_{ip}$ ), were 4.55 mM, 36.5mM, and 10.5mM, respectively. No significant internal pore diffusion limitation was found since the value of effectiveness factor was 0.95. The operational half life in a column reactor at pH 8.0 was 6.8 days at 4$0^{\circ}C$ and 47 days at 3$0^{\circ}C$, whereas that of without entrappment was only 1 day and 4 days, respectively. The performance of a batch and a column reactor was also discussed with respect to the productivity. The results demonstrated that the entrappment of an adsorbed enzyme for the enhancement of the operational stability of the immobilized enzyme was useful especially when an extracellular enzyme was used.

  • PDF

Polymeric Material Application for The Production of Ceramic Foam Catalyst

  • Sangsuriyan, Anucha;Yeetsorn, Rungsima;Tungkamani, Sabaithip;Sornchamni, Thana
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • Ceramic foams are prepared as positive images corresponding to a plastic foam structure which exhibits high porosities (85-90%). This structure makes the ceramic foams attractive as a catalyst in a dry reforming process, because it could reduce a high pressure drop problem. This problem causes low mass and heat transfers in the process. Furthermore, the reactants would shortly contact to catalyst surface, thus low conversion could occur. Therefore, this research addressed the preparation of dry reforming catalysts using a sol-gel catalyst preparation via a polymeric sponge method. The specific objectives of this work are to investigate the effects of polymer foam structure (such as porosity, pore sizes, and cell characteristics) on a catalyst performance and to observe the influences of catalyst preparation parameters to yield a replica of the original structure of polymeric foam. To accomplish these objectives industrial waste foams, polyurethane (PU) and polyvinyl alcohol (PVA) foams, were used as a polymeric template. Results indicated that the porosity of the polyurethane and polyvinyl alcohol foams were about 99% and 97%. Their average cell sizes were approximate 200 and 50 micrometres, respectively. The cell characteristics of polymer foams exhibited the character of a high permeability material that can be able to dip with ceramic slurry, which was synthesized with various viscosities, during a catalyst preparation step. Next, morphology of ceramic foams was explored using scanning electron microscopy (SEM), and catalyst properties, such as; temperature profile of catalyst reduction, metal dispersion, and surface area, were also characterized by $H_2-TPR$ and $H_2-TPD$ techniques, and BET, respectively. From the results, it was found that metal-particle dispersion was relatively high about 5.89%, whereas the surface area of ceramic foam catalysts was $64.52m^2/g$. Finally, the catalytic behaviour toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain operating conditions. The approaches from this research provide a direction for further improvement of marketable environmental friendly catalyst production.

Surface characteristics for thermal diffusion of FA-BFS-based geopolymer ceramics added alumina aggregate (알루미나 골재를 첨가한 FA-BFS계 지오폴리머 세라믹스의 열확산에 대한 표면 특성)

  • Kim, Jin-Ho;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.61-70
    • /
    • 2019
  • Geopolymer is an eco-friendly construction material that has various advantages such as reduced $CO_2$ emission, fire resistance and low thermal conductivity compared to cement. However, it has not been many studies on the thermal behavior of the surface of the geopolymer panel when flame is applied to the surface. In this study, surface characteristics of hardened geopolymer on flame exposure was investigated to observe its characteristics as heat-resistant architectural materials. External structure changes and crack due to the heat shock were not observed during the exposure on flame. According to the residue of calcite and halo pattern of aluminosilicate gel, decarboxylation and dehydration were extremely limited to the surface and, therefore, it is thought that durability of hardened geopolymer was sustained. Gehlenite and calcium silicate portion was inversely proportional to quartz and calcite and significantly directly proportional to BFS replacement ratio. Microstructure changes due to the thermal shock caused decarboxylation and dehydration of crystallization and it was developed the pore and new crystalline phase like calcium silicate and gehlenite. It is thought that those crystalline phase worked as a densification and strengthening mechanism on geopolymer panel surface.

Study on the Hydrophobicity and Mechanical Properties of Silica-Based Aerogel by Introducing Organic Benzene (벤젠 유기물 도입에 따른 실리카 기반 에어로겔의 소수성 및 기계적 특성 연구)

  • Qi, Wang;Lee, Jihun;Dhavale, Rushikesh P.;Choi, Haryeong;Kim, Taehee;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.135-141
    • /
    • 2020
  • The silica aerogels with benzene-bridged were designed to have uniform network structure, ordered pore structure, improved mechanical properties and excellent textural properties. Adding organic to enhance the mechanical properties of silica aerogels is a common method, but textural properties of aerogels with organic are reduced due to the organic-inorganic phase separation. In this paper, we use a simple and low-cost method to increase mechanical properties while maintaining textural properties of SiO2 aerogels. Two types of benzene-bridged precursors were prepared to study the effect of the number of hydroxyl band on the textural and mechanical properties. The porous silica aerogel was prepared by a simple, cost effective and pollution-free sol-gel method. This method does not require additional silylating reagents. The benzene-bridged silica aerogel samples prepared had excellent textural properties, high specific surface area (1,326 ㎡/g), porous structure and hydrophobicity (>140°). The mechanical strength of 2T4 is more than 5 times that of pure silica aerogel.

Examination of Cytopathic Effect and Apoptosis in Listeria monocytogenes-Infected Hybridoma B-Lymphocyte (Ped-2E9) Line In Vitro

  • Bhunia, Arun-Kumar;Feng, Xiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.398-403
    • /
    • 1999
  • In our previous studies, we reported that hybridoma B-lymphocytes can be used to determine the virulence of Listeria species in an in vitro cytotoxicity assay. Here, we examined the cytopathic effect, i.e., membrane damage and the nature of cell death induced by Listeria monocytogenes on murine hybridoma B-lymphocytes (Ped-2E9). Membrane damage was assessed by microscopic analyses and by measuring the release of intracellular alkaline phosphatase(AP) and lactate dehydrogenase (LDH). Cell death was determined by DNA fragmentation analyses using agarose gel electrophoresis. Infection by listeriolysin O (LLO)-producing L. monocytogenes strains induced substantial amounts of AP and LDH release from Ped-2E9 hybridoma B-cells, suggesting severe membrane damage in these cells, while an LLO-negative L. monocytogenes mutant strain had no effect. An LLO-producing recombinant L. innocua ($prifA^+hly^+$) strain also induced high AP and LDH release and cytopathic changes in Ped-2E9 cells. Light or scanning electron microscopic examination revealed L. monocytogenes mediated membrane destabilization, pore formation, intense cytoplasmic granulation, bleb formation, and lysis of Ped-2E9 cells. LLO-producing L. monocytogenes and L. innocua ($prifA^{+}hly{^}+$) also induced ladder-like DNA fragmentation in Ped-2E9 cells. Collectively, these results suggest that L. monocytogenes, specifically LLO-producing strains, can induce a severe cytopathic effect leading to apoptosis in hybridoma B-lymphocytes (Ped-2E9).

  • PDF

한국산 Raja속 어류의 분류학적 연구

  • 정충훈;이영철;김재흡;양서영
    • Animal Systematics, Evolution and Diversity
    • /
    • v.11 no.2
    • /
    • pp.207-221
    • /
    • 1995
  • Electrophoretic analysis was performed to determine the interspecific genetic relationships of the genus Raja collected in Korea waters. We confirmed 5 species [Raja (Okamejei) meerdervoortii Bleeker, R.(O).acutispina Ishiyama, R.(O) kenojei Muller et Henle, Raja (Dipturus) kwangtungensis Chu, and R.(D.) pulchra Liu] inhabting in Korea. As results of starch gel electrophoresis, 24 genetic loci were obtained from 13 enzymic and non-enzymic proteins, and allele frequencies of each locus were calculated . Even thought their various dorsal color patterns, the mean genetic similarity among 4 conspecific populations of R.(O) kenojei showed highly close genetic relationships (S=0.966) R.(O) kenojei and R.(D) kwangtungensis which belong to different subgenus , revealed subspecific level of differentiation (S=0.829). R. (Diptuuus ) kwangtungensis was genetically much closer to Raja(Okamejei) species than to Raja (Dipturus) species group. R.(O) acutispina and R.(D) kwangtungensis were unrecorded species to Korea.

  • PDF