• Title/Summary/Keyword: gel loading buffer

Search Result 7, Processing Time 0.028 seconds

Development of the Method Allowing DNA Size Markers to be Ambient Storage with Lyophilized Type (상온보관이 가능한 건조체 명태의 DNA size marker)

  • 전복환;강성원;서정원;이규식;조유진;박종구
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.106-109
    • /
    • 2002
  • Gel electrophoresis of DNA is a well known technique in molecular biology. This technique is simple, rapid to perform, and capable of adequately separating fragments of DNA. A number of mixtures of DNA fragments ("DNA size markers") are frequently employed in a purpose of extrapolating the sizes or the amount of DNA molecules during gel electrophoresis. DNA size markers are constructed by digesting plasmid DNA, bacteriophage DNA, or recombinant DNA molecules with one or more restriction enzymes. However, liquid suspension containing DNA size marker needs to be kept at a low temperature during storage and shipping. In an attempt to maintain the DNA samples at room temperature for extended period of time, lyophilization of DNA with addition of nuclease inhibitor was studied. Gel loading buffer was also added to the lyophilized DNA to provide additional convenience such that DNA size marker was the "ready-to-use" followed by simply reconstituting with distilled water.

A Study on Affinity Chromatography of Protein by Flat and Hollow-Fiber Membrane Module (평판막 및 실관막 모듈에 의한 단백질의 친화성 크로마토그래피에 관한 연구)

  • 이광진;염경호
    • Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.50-58
    • /
    • 1998
  • Protein affinity membranes were prepared via coating of chitosan gel on the porous flat and hollow-fiber polysulfone membranes, followed by the immobilization of the reactive dye (Cibacron Blue 3GA) to the chitosan gel. Maximum protein binding capacity of these affinity membranes was about 70 $\mu{g/cm}^2$. Using the affinity flat membrane module, the elution chromatography of human serum albumin (HSA) was performed to determine the optimum condition of eluent buffer. The optimum condition of eluent was the universal buffer solution of 0.06 M concentration containing 1 M KCl at pH 10. For the frontal chromatography of HSA using the flat module, the dynamic protein binding capacity was rapidly decreased from the equilibrium values with increasing flow rate and HSA concentration of the loading solution. However, in the case of hollow-fiber module, the dynamic binding capacity was maintained an equilibrium value without depending on the operating conditions. These results showed that the hollow-fiber module was more effective than the flat module as an affinity chromatography column.

  • PDF

Preparation and Characterization of Alginate-Chitosan Microsphere for Controlled Delivery of Silver Sulfadiazine (설파디아진은의 방출제어를 위한 알지네이트-키토산 미립구의 제조 및 특성)

  • Cho, Ae-Ri
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.101-106
    • /
    • 2001
  • Alginate-chitosan (anion-cationic polymeric complex) was prepared to control the release rate of silver sulfadiazine (AgSD). Na-alginate (2%) solution containing AgSD was gelled in $CaCl_2$ solution. The gel beads formed were immediately encapsulated with chitosan (CS). The gel matrix and membrane were then reinforced with chondroitin-6-sulfate (Ch6S). Release rate of AgSD from the gel matrix was investigated by placing alginate beads in the sac of cellulose membrane simmered in HEPES-buffer solution. The concentration of AgSD released was analyzed by UV at 264 nm. Incorporation capacity of AgSD in Ca-alginate gel was more than 90%. Alginate-Ch6S-CS could control the release rate of AgSD. The amount of AgSD release was dependent on the AgSD loading dose. Incorporation of tripolyphosphate (polyanionic crosslinker) onto the alginate-Ch6S-CS bead increased the release rate of AgSD. Collagen-coating had no influence on the AgSD release rate. Alginate-Ch6S-CS beads with a sufficiently high AgSD encapsulation were capable of controlling the release of the drug over 10 days. In summary, alginate-Ch6S-CS beads could be used as a sustained delivery for AgSD and provide local targeting with low silver toxicity and patient discomfort.

  • PDF

Preparation, Characterization and Cytotoxicity of Silibinin-Containing Nanoniosomes in T47D Human Breast Carcinoma Cells

  • Amiri, Boshra;Ebrahimi-Far, Meysam;Saffari, Zahra;Akbarzadeh, Azim;Soleimani, Esmaeil;Chiani, Mohsen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3835-3838
    • /
    • 2016
  • Background: Breast cancer is one of the most frequent cancer types within female populations. Silibinin is a chemotherapeutic agent ative against cancer. Niosomes are biodegradable, biocompatible, safe and effective carriers for drug delivery. Objective:To prepare nanoniosomal silibinin and evaluate its cytotoxicity inthe T-47D breast cancer cell line. Materials and Methods: Niosomes were prepared by reverse phase evaporation of a mixture of span 20, silibinin, PEG-2000 and cholesterol in chloroform and methanol solvent (1:2 v/v). The solvent phase was evaporated using a rotary evaporator and the remaining gel phase was hydrated in phosphate buffer saline. Mean size, size distribution and zeta potential of niosomes were measured with a Zetasizer instrument and then nanoparticles underwent scanning electron microscopy. The drug releasing pattern was evaluated by dialysis and the cytotoxicity of nanoniosomes in T-47D cells was assessed by MTT assay. Results: Particle size, size variation and zeta potential of the niosomal nanoparticles were measured as $178.4{\pm}5.4nm$, $0.38{\pm}0.09$ and $-15.3{\pm}1.3mV$, respectively. The amount of encapsulated drug and the level of drug loading were determined $98.6{\pm}2.7%$ and $22.3{\pm}1.8%$, respectively; released drug was estimated about $18.6{\pm}2.5%$ after 37 hours. The cytotoxic effects of nanoniosome were significantly increased when compared with the free drug. Conclusions: This study finding suggests that silibinin nanoniosomes could serve as a new drug formulation for breast cancer therapy.

Purification of Lysozyme from Egg White by Multicycle Ion Exchange Chromatography (다중 이온교환크로마토그래피를 이용한 계란난백에서 리소짐의 분리)

  • 허윤석;김형원;김인호
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.122-126
    • /
    • 2003
  • Multi-cycle chromatographic separation of Iysozyme from egg white was investigated. Multi-cycle chromatography was performed by repeated cycling(one cycle: resin equilibration, sample loading, washing, elution). Two types of cation exchange resins, Cellufine CM C-200 and Bio-rex 70, were used to determine the optimum condition for the separation of Iysozyme by multi-cycle chromatography. The resin was equilibrated in 20 mM Na-phosphate buffer(pH 7.0). Chromatograms of UV absorbance levels of every cycle were compared to confirm the eluting ability of Iysozyme in the two types of gel. Collected samples from eluting regions in every cycle were assayed by 15% SDS-PAGE.

A Simple Purification of Apoliproteins A-I and B and Their Application to Cholestery Ester Transfer Assay

  • Cho, Kyung-Hyun;Park, Myung-Sook;Bok, Song-Hae;Park, Young-Bok
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.87-92
    • /
    • 1996
  • This study describes a stable and simple method for the measurement of cholesteryl ester transfer protein(CETP) activities using reconstituted HDL and LDL as substrates. Apolipoproteins (apo) A-I and -B were purified from hog plasma by a new strategy without ultracentrifugation and delipidation. a simple two-step column chromatography was administered. In the first step of phenyl-sepharose CL-4B column chro-matography, hydrophobic plasma proteins were isolated. The most hydrophobic proteins bound to the column appeared to be A-I and apo-B. Contaminat proteins were efficiently eliminated from the sample by washing the column with 0.3M NaCI containing buffer after loading the plasma on the column. Two pure proteins showing each single band on SDS-PSGE of apo A-I and apo-B were individually obtained by a subsequent gel filtration column chromatography(Sephadex G-200). This two-step purification was simple and inexpensive compared to the ultracentrifugation and/or delipidation method that are most commonly used. Reconstituted hight-density lipoproteins(HDL) and low-density lipoproteins(LDL) were prepared using the purified apo A-I and-B, respectively. When these artificially prepared HDL and LDL were used in the assays for CETP as the cholesteryl ester(CE) donor and acceptor respectively, the specific transfer of CE increased up to two fold compared to that used the native HSL and LDL.

  • PDF

Integrated RT-PCR Microdevice with an Immunochromatographic Strip for Colorimetric Influenza H1N1 virus detection

  • Heo, Hyun Young;Kim, Yong Tae;Chen, Yuchao;Choi, Jong Young;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.273-273
    • /
    • 2013
  • Recently, Point-of-care (POC) testing microdevices enable to do the patient monitoring, drug screening, pathogen detection in the outside of hospital. Immunochromatographic strip (ICS) is one of the diagnostic technologies which are widely applied to POC detection. Relatively low cost, simplicity to use, easy interpretations of the diagnostic results and high stability under any circumstances are representative advantages of POC diagnosis. It would provide colorimetric results more conveniently, if the genetic analysis microsystem incorporates the ICS as a detector part. In this work, we develop a reverse transcriptase-polymerase chain reaction (RT-PCR) microfluidic device integrated with a ROSGENE strip for colorimetric influenza H1N1 virus detection. The integrated RT-PCR- ROSGENE device is consist of four functional units which are a pneumatic micropump for sample loading, 2 ${\mu}L$ volume RT-PCR chamber for target gene amplification, a resistance temperature detector (RTD) electrode for temperature control, and a ROSGENE strip for target gene detection. The device was fabricated by combining four layers: First wafer is for RTD microfabrication, the second wafer is for PCR chamber at the bottom and micropump channel on the top, the third is the monolithic PDMS, and the fourth is the manifold for micropump operation. The RT-PCR was performed with subtype specific forward and reverse primers which were labeled with Texas-red, serving as a fluorescent hapten. A biotin-dUTP was used to insert biotin moieties in the PCR amplicons, during the RT-PCR. The RT-PCR amplicons were loaded in the sample application area, and they were conjugated with Au NP-labeled hapten-antibody. The test band embedded with streptavidins captures the biotin labeled amplicons and we can see violet colorimetric signals if the target gene was amplified with the control line. The off-chip RT-PCR amplicons of the influenza H1N1 virus were analyzed with a ROSGENE strip in comparison with an agarose gel electrophoresis. The intensities of test line was proportional to the template quantity and the detection sensitivity of the strip was better than that of the agarose gel. The test band of the ROSGENE strip could be observed with only 10 copies of a RNA template by the naked eyes. For the on-chip RT-PCR-ROSGENE experiments, a RT-PCR cocktail was injected into the chamber from the inlet reservoir to the waste outlet by the micro-pump actuation. After filling without bubbles inside the chamber, a RT-PCR thermal cycling was executed for 2 hours with all the microvalves closed to isolate the PCR chamber. After thermal cycling, the RT-PCR product was delivered to the attached ROSGENE strip through the outlet reservoir. After dropping 40 ${\mu}L$ of an eluant buffer at the end of the strip, the violet test line was detected as a H1N1 virus indicator, while the negative experiment only revealed a control line and while the positive experiment a control and a test line was appeared.

  • PDF