• Title/Summary/Keyword: gears

Search Result 813, Processing Time 0.021 seconds

Tribological Failure Study of Manual Transmissions in Front Engine and Front Wheel Drive Vehicle (전륜구동 수동변속기에 대한 트라이볼로지적 고장사례 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.285-290
    • /
    • 2008
  • The purpose of this paper is to present the case study of tribological failure analysis on the gear damages, oil leakage, and sealant sealing in a manual transmission of front engine and front wheel drive vehicle. The manual transmission is to change the speed range and direction of the engines depending on the driving conditions by friction driving forces with input and output gear system. The material property and surface roughness of the gears are strongly related to the gear noise and micro-vibration, oil leakage and wear, which may decrease the real contact area of the gear and the strength of the oil film thickness between the driving gear and driven one. The O-ring damage of speedometer driven gear and bad sealant sealing of oil pan may produce oil leakage through the contact surfaces, which cause the oil shortage and seizure on the sliding surfaces of the transaxle gears. In the failure case study, the proper repair working and good lubrication are very important for the long life of the transaxle without any tribological failures and oil leakage.

Research for a Development of the Test Equipment for Transmission Error of the Planetary Gear Carrier Pack (유성기어 캐리어팩 전달오차 측정 장비 개발에 관한 연구)

  • Lee, Hyun Ku;Do, Jong Gu;Hong, Sa Man;Yoo, Dong Kyu;Won, Kwang Min;Chae, Geum Muk;Lee, Tae Hwi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.549-554
    • /
    • 2014
  • In general, there has been a lot of research concerned about the gear noise known to be proportional to gear transmission error for external gears likewise spur, helical gear, and hypoid gears. But, In the case of planetary gear set, gear noise study is insufficient because of the difficulty of designing, manufacturing, and understanding of its mechanical system. This study is aimed to develop the transmission error measurement equipment for the planetary gear sets used in the automatic transmission. By comparing the results of the transmission error and noise objectively, user could select the optimized planetary gear set which has quiet noise level before manufacturing the automatic transmission.

Mechanical characteristics of involute-circular arc composite tooth profile (인벌류우트-圓弧 合成齒形의 諸特性)

  • 변준형;최상훈;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.870-875
    • /
    • 1986
  • In this study, full-rounded tip curve of rack and its mating fillet curve of pinion in Involute-circular arc composite tooth profile are derived. Mechanical characteristics are calculated analytically, i.e., Specific sliding, Nominal bending stress at working root circle and the Contact factor of the arc of contact in circular arc part to the arc of double contact. These characteristics compared with standard involute tooth profile are improved in circular arc part of composite tooth profile. To obtain more efficient composite tooth profile, we studied these characteristics with regard to the changes of unwound angle and radius of circualr arc. And a design method of composite tooth profile is suggested. Composite tooth profile are compared with standard involute tooth profile.

Physics-based Diagnostics on Gear Faults Using Transmission Error (전달오차를 이용한 물리기반(Physics-Based) 기어고장진단 이론연구)

  • Park, Jungho;Ha, Jongmoon;Choi, Jooho;Park, Sungho;Youn, Byeng D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.505-508
    • /
    • 2014
  • Transmission error (TE) is defined as "the angular difference between the ideal output shaft position and actual position". As TE is one of the major source of the noise and vibration of gears, it is originally studied with relation of the noise and vibration of the gears. However, recently, with the relation of mesh stiffness, TE has been studied for fault detection of spur gear sets. This paper presents a physics-based theory on fault diagnostics of a planetary gear using transmission error. After constructing the lumped parameter model using DAFUL, multi-body dynamics software, we developed a methodology to diagnose the faults of the planetary gear including phase calculation, signal processing. Using developed methodology, we could conclude that TE could be a good signal for fault diagnostics of a planetary gear.

  • PDF

Automatic Control of Engine Speed and Transmission Ratio for Efficient Tractor Operations(I) -Control Systems for Engine Speed and Transmission Ratio- (트랙터의 기관속도(機關速度) 및 변속비(變速比)의 자동제어(自動制御)에 관(關)한 연구(硏究)(I) -기관속도(機關速度) 및 변속비(變速比) 제어(制御) 시스템-)

  • Kang, S.B.;Ryu, K.H.;Oh, K.K.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.305-316
    • /
    • 1993
  • Fuel efficiency in tractor operations dep6nds on the selection of transmission gears and upon the engine being operated at or near maximum torque much of time. The objective of this study was to develop automatic control systems for tractor transmission ratio and governor setting so that the engine is operated at or near maximum torque as much of time as possible. An indoor test unit, which can be used to simulate tractor operation, was built in order to investigate the system design parameters and test the performance of the control system designed. The test-unit consists of engine, gear-type transmission, dynamometer, and control systems for transmission ratio and engine speed. Governor setting lever was controlled by a step motor, and the clutch and transmission levers were controlled by hydraulic cylinders and solenoid valves. The control systems showed good time responses which are assumed to be suitable for optimal tractor operation. The time required for shifting gears from clutch disengagement to engagement was about 1 second, which is almost the same as that for manual shift. And the settling time for engine speed control system was about 5 to 6 seconds.

  • PDF

Studies on the improvement of driving gears quality at Inlet Guide Vane of aircraft auxiliary power unit (항공기 보조동력장치 입구안내익 구동기어의 품질개선에 관한 연구)

  • Park, Sungjae;Park, Sunwook;Suh, Jaekyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.512-519
    • /
    • 2016
  • Auxiliary Power Unit of FA-50 which provides energy other than propulsion is an important element to maintain airworthiness on aircraft. Also Inlet Guide Vane of Auxiliary Power Unit is a device that supplies appropriate airflow into the Auxiliary Power Unit after adjusting influent airflow into the load compressor. This report, based on the problems occurred the driving gears of Inlet Guide Vane, deals with cause of occurrence, troubleshooting, design improvement and result of test flight verification for FA-50 aircraft Auxiliary Power Unit lifespan.

Fuel Consumption Effect by Mass Reduction of Low Speed Transmission Gears in Commercial Vehicles (상용차 변속기 내부 기어 경량화에 따른 연비 저감 효과에 대한 연구)

  • Han, Sung-Gil;Shin, Yoo-In;Jeong, Jong-Gyu;Song, Chul-Ki
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.60-65
    • /
    • 2016
  • Dynamic performance of transmission has a substantial effect on dynamic performance and fuel efficiency of a vehicles. Dynamic performance of transmission and mass moments of inertia of transmission gears are related directly each other. Then a smaller amount of kinetic energy from vehicles that repeat acceleration and deceleration requires lighter rotating part in transmission. It is going to increases fuel efficiency as a result. In this study, equivalent inertia moments of inertia at different speeds were calculated by simplifying the transmission system. To find out lightening effect at low speed level gear on fuel efficiency, the powerflow of transmission was analyzed. And the lightning effect of the rotating parts in transmission is compared with the mass reduction of sprung parts in vehicle.

Manufacturing technology of micro parts by powder injection molding (PIM기술을 이용한 마이크로 부품 성형기술)

  • Lee, W.S.;Ko, S.H.;Jang, J.M.;Kim, I.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.60-63
    • /
    • 2009
  • Manufacturing technologies of micro spur gear and micro mold by micro PIM were studied with stainless steel feedstock. For molding of gears, micro mold with gear cavity of 1.2 mm in diameter was produced by wire EDM. The proper injection pressure was selected to 70bar by observation and measuring of shapes and shrinkage of gears before/after sintering. For fabrication of micro mold, a tiny polymer gear was produced by injection into the mold. Then, 316L feedstock was again injected/compressed on the polymer gear and debinded together with polymer gear followed by sintering. As a result, another metal mold with gear cavity reduced to about 20% was fabricated and through repetition of this process chain, micro gear mold with cavity about below 800 um was finally obtained. In reduction of size by injection/compression molding, height of gear tooth was shrunk more and the effort for decrease of roughness of micro cavity were carried out ultrasonic polishing and as a result, the roughness in cavity decreased from 3-4 um to about 200 nm.

  • PDF

Estimation of Load on Ship's Hydraulic Steering Gear (선박 유압 조타장치 부하의 추정)

  • Ji, S.W.;Oh, J.M.;Jeong, E.S.;Kim, B.K.;Lee, I.Y.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • For testing a newly designed ship's steering gear, a steering gear test bench with a steering gear to be tested and a load generation part should be prepared. The load given to the steering gear has to be pertinent to the load generated in a targeted ship. In this study, the authors suggest a process of estimating the load given to steering gears in ships. At first, a test for measuring the load in the steering gear of a real ship was conducted. Then, a process was developed to compute rudder driving torque and force by using basic equations including some empirical equations on ship's steering. The test results and the computation results on the load in the steering gear were compared, As a result, the process suggested in this study for estimating load in ship's steering gears was verified.

Dynamic Design of a Mass-Spring Type Translational Wave Energy Converter (파력발전용 병진 질량-스프링식 파력 변환장치의 동적설계)

  • Choi, Young-Hyu;Lee, Chang-Jo;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.182-189
    • /
    • 2012
  • This study suggests a dynamic design process for deciding properly design parameters of a mass-spring type Wave Energy Converter (WEC) to achieve sufficient energy conversion from wave to power generator. The WEC mechanism, in this research, consists of a rigid sprung body, a platform, suspension springs and dampers. The rigid sprung body is supported on the platform via springs and dampers and vibrates translationally in the heave direction under wave excitation. At last the resulting heave motion of the sprung body is transmitted to rotating motion of the electric generator by rack and pinion, and transmission gears. For the purpose of vibration analysis, the WEC mechanism has been simply modelled as a mass-spring-damper system under harmonic base excitation. Its maximum displacement transmissibility and steady state response can be determined by using elementary vibration theory if the harmonic ocean wave data were provided. With the vibration analysis results, the suggested dynamic design process of WEC can determine all the design parameters of the WEC mechanism, such as sprung body mass, suspension spring constant, and damping coefficient that can give sufficient relative displacement transmissibility and the associated inertia moment to drive the electric generator and transmission gears.