• Title/Summary/Keyword: gear transmission error

Search Result 129, Processing Time 0.022 seconds

Dynamic Analysis of a Gear Driving System with Time-varying Mesh Stiffness/Damping and Friction (변동물림강성/감쇠와 마찰을 고려한 기어구동계의 동특성 해석)

  • Kim, Woo-Hyung;Jung, Tae-Il;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.224-231
    • /
    • 2006
  • A six-degree-of-freedom dynamic model with time-varying mesh stiffness/damping and friction has been developed for the dynamic analysis of a gear driving system. This model includes a spur gear pair, bearing, friction and prime mover. Using Newton???s method, equations of motion for the gear driving system were derived. Two computer programs are developed to calculate mesh stiffness, transmission error and friction force and analyze the dynamics of the modeled system using a time integration method. The influences of mesh stiffness/damping, bearing, and friction affecting the system were investigated by performing eigenvalue analysis and time response analysis. It is found that the reduction of the maximum peak magnitude by friction is decided according to designing the positions of pitch point and maximum peak in the responses.

  • PDF

The Experimental Investigation of the Spherical Involute Bevel Gear (구형 인볼루트 베벨기어에 대한 실험적 연구)

  • 정동현;이형우;박노길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.105-113
    • /
    • 2000
  • For exact spherical involute bevel gear, serveral researchers had developed the mathematical models. The solid models of straight bevel gears are obtained and inspected to avoid interference by computer graphics. Furthermore, A gearbox is assembled by spherical involute bevel gears, which are manufactured by CNC machine. The transmission errors in the tooth mesh are measured by Laser sensor, are compared with the AGMA standard. This gearbox is found to be ranked AGMA Q10(JIS 3)

  • PDF

Simulation of Meshing for the Spur Gear Drive with Modified Tooth Surfaces

  • Seol, In-Hwan;Chung, Soon-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.490-498
    • /
    • 2000
  • The authors have proposed methods (lead crowning and profile modification) for modifying the geometry of spur gears and investigated the contact pattern as well as the transmission errors to recommend the appropriate amount of modification. Based on the investigation, dynamic load of the modified spur gear drive has been calculated, which is helpful to predict the life of the designed gear drive. Computer programs for simulation of meshing, contact and dynamics of the modified spur gears have been developed. The developed theory is illustrated with numerical examples.

  • PDF

Experimental Study on Transmission Errors of a Single-Stage Planetary Gear Train: Influence of Torque and Speed Variations (1단 유성기어의 전달오차 특성에 대한 실험적 연구 - 토크 및 속도 변화의 영향)

  • Song, Jinseop;Lee, Geun-Ho;Park, Young-Jun;Nam, Yong-Yun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.320-326
    • /
    • 2015
  • Despite the wide industrial applications of planetary gear trains, the relationship between the design parameters (tooth profile, carrier mass, etc.) and performance (strength, vibration, noise, etc.) remains poorly understood. A significant amount of research has focused on transmission errors, which are measurable performance indicators directly related to the design parameters. Herein, an experimental test rig for a single-stage planetary gear set built using digital angular encoders and gap sensors is described. To study the static and dynamic characteristics of this planetary gear train, the transmission errors and sun gear orbit are analyzed from the data measured under various levels of torque and speed. The transmission errors of the gear train decrease 40% when the speed increases from 30 to 600 rpm with an output torque of 39.2 Nm, and increase 22% when the output torque increases from 19.6 to 39.2 Nm with an input speed of 30 rpm.

Measurement of the Dynamic Transmission Error of Helical Gears by the Accelerometers (가속도계에 의한 헬리컬 기어의 동적 전달오차의 측정)

  • Kim, Dae-Sik;Cho, Do-Hyun;Park, Chan-Il;Choi, Deo-Kki;Park, Chan-Gook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1720-1727
    • /
    • 2003
  • The object of this work is to develop the measurement method of the transmission error of the helical gears. For this purpose, experimental set up is designed by 3D CAD software. It consists of the motor, inverter, powdered brake equipment, torque sensor and helical gearbox. In this study, tangential linear accelerometers were used as the methods for the transmission error measurement. the acceleration signals are transmitted to the signal conditioners through the slip rings and the transmission errors are obtained by a specially designed circuit board. The transmission errors are analyzed in the frequency domain. As a result, The periodicity of the transmission error is confirmed in the mesh frequency and its harmonics. The magnitude of harmonic components is very dependent on the natural frequencies of the gear system. It usually increases with the rotational speed. However, it does not always increase with torque.

Optimization of Gear Webs for Rotorcraft Engine Reduction Gear Train (회전익기용 엔진 감속 기어열의 웹 형상 최적화)

  • Kim, Jaeseung;Kim, Suchul;Sohn, Jonghyeon;Moon, Sanggon;Lee, Geunho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.953-960
    • /
    • 2020
  • This paper presents an optimization of gear web design used in a main gear train of an engine reduction gearbox for a rotorcraft. The optimization involves the minimization of a total weight, transmission error, misalignment, and face load distribution factor. In particular, three design variables such as a gear web thickness, location of rim-web connection, and location of shaft-web connection were set as design parameters. In the optimization process, web, rim and shaft of gears were converted from the 3D CAD geometry model to the finite element model, and then provided as input to the gear simulation program, MASTA. Lastly, NSGA-II optimization method was used to find the best combination of design parameters. As a result of the optimization, the total weight, transmission error, misalignment, face load distribution factor were all reduced, and the maximum stress was also shown to be a safe level, confirming that the overall gear performance was improved.

Vibration Analysis of the Helical Gear System by Spectral Transfer Matrix (스펙트럴 전달행렬에 의한 헬리컬 기어계의 진동해석)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.774-781
    • /
    • 2006
  • This paper presents a study on the analytical prediction of vibration transmission from helical gears to the bearing. The proposed method is based on the application of the three dimensional helical gear behaviors and complete description of shaft by the spectral method. Helical gear system used in this paper consists of the driving element, helical gears, shafts, bearings, couplings and load element. In order to describe all translation and rotation motion of helical gears twelve degree of freedom equations of motion by the transmission error excitation are derived. Using these equations, transfer matrix for the helical gear is derived. For the detail behavior of shaft motion, the $12{\times}12$ transfer matrix for the shaft is derived. Transfer matrix for the bearing, coupling, driving element, and load is also derived. Application of the boundary conditions in the assembled transfer matrix produces the forces and displacements in each element of the helical gear system. The effect of the proposed method is shown by numerical example.

  • PDF

Nonlinear Dynamic Characteristics of Gear Driving Systems with Periodic Meshing Stiffness Variation and Backlash (주기적 물림강성 변화와 백래쉬에 의한 기어구동계의 비선형 동특성)

  • Cho, Yun-Su;Choi, Yeon-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.921-928
    • /
    • 2002
  • Main sources of the nitration of a gear-pair system are backlash and transmission error, the difference between required and actual rotation during gear meshing. This paper presents the nonlinear dynamic characteristics of gear motions due to the existence of backlash and periodic variation of meshing stiffness, which is assumed as a one-term harmonic component. Gear motions are classified as three types with the consideration of backlash. Each response is calculated using the harmonic balance method and confirmed by numerical integration. The responses with the increase of the rotating speed show abrupt changes in its magnitude for the variation of the preload, exciting force, and damping coefficient. The result also shows that there is a chaotic motion with some specific design parameters and operating conditions In gear diving system. Consequently the design of gear driving system with low nitration and noise requires the study on the effects of nonlinear dynamic characteristics due to stiffness variation and backlash.

A Development of the Planetary Gear Noise for 6-speed RWD Automatic Transmission (후륜 6 속 자동변속기 유성기어 소음 개발)

  • Park, Ki Ho;Kim, Tai Hoon;Jung, Sang jin;Kim, Yunkyoo;Lee, Jeong Seon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.544-545
    • /
    • 2012
  • In recent years, vehicle manufacturers have steadily developed fuel saving technologies such as multi-speed automatic transmission. With such a background, the Hyundai-powertech have developed the new 6-speed rear wheel drive(RWD)automatic transmission for FR vehicles. Despite having six-speed, it has the same number of planetary gears as a previously used five-speed automatic transmission and fewer brakes and one-way clutches than the 5 A/T, meaning that it is light, compact, and inexpensive. But, in addition to meshing this internal and external gear simultaneously and phase difference by the tooth contact point and the time difference occurs asymmetric and symmetric sideband noise and vibration caused by the modulation in the vehicle. In this paper presents a method for the design of the carrier phase difference by developing various theories and experiments for gear noise.

  • PDF

The Critical Speed Analysis of the Differential Planetary Gear Train of a Concrete Mixer Truck Mixer Reducer (콘크리트 믹서 트럭용 믹서 감속기의 차동 유성 기어 트레인에 대한 위험속도 해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Kim, Dang Ju
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The power train of a concrete truck mixer reducer includes differential planetary gears to get a large reduction ratio for operating the mixer drum in a compact structure. These differential planetary gears are a very important part of the mixer reducer where strength problems are the main concern. Gear bending stress, gear compressive stress and scoring failure are the main concerns. Many failures in differential planetary gears are due to the insufficient gear strength and resonance problems caused by major excitation forces such as gear mating failure in the transmission. In the present study, where the excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate differential planetary gear critical speeds. Mode shapes and natural frequencies of the differential planetary gears are calculated by CATIA V5. These are used to predict gear resonance failures by comparing the working speed range with the critical speeds due to the gear transmission errors of the differential planetary gears.