• Title/Summary/Keyword: gear train

Search Result 181, Processing Time 0.029 seconds

Output performance enhanced triboelectric nanogenerator with gear train support

  • Kim, Wook;Hwang, Hee Jae;Choi, Dukhyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.415.2-415.2
    • /
    • 2016
  • Triboelectric nanogenerator (TENG) is one of ways to convert mechanical energy sound, waves, wind, vibrations, and human motions to available electrical energy. The principal mechanism to generate electrical energy is based on contact electrification on material surface and electrostatic induction between electrodes. The performance of TENG are dependent on amount of the input mechanical energy and characteristics of triboelectric materials. Furthermore, the whole TENG system including mechanical structure and electrical system can effect on output performance of TENG. In this work, we investigated the effect of gear train on output performance and power conversion efficiency (PCE) of TENG under a given input energy. We applied the gear train on mechanical structure to improve the contact rate. We measured the output energy under a constant input energy by controlling the size of the working gear. We prepared gears with gear ratios (rin/rw) of 1, 1.7, and 5. Under the constant input energy, the voltage and current from our gear-based TENG system were enhanced up to the maximum of 3.6 times and 4.4 times, respectively. Also, the PCE was increased up to 7 times at input frequency of 1.5 Hz. In order to understand the effect of kinematic design on TENG system, we performed a capacitor experiment with rectification circuit that provide DC voltage and current. Under the input frequency of 4.5 Hz, we obtained a 3 times enhanced rectifying voltage at a gear ratio of 5. The measured capacitor voltage was enhanced up to about 8 fold in using our TENG system. It is attributed that our gear-based TENG system could improve simultaneously the magnitude as well as the generation time of output power, finally enhancing output energy. Therefore, our gear-based TENG system provided an effective way to enhance the PCE of TENGs operating at a given input energy.

  • PDF

Analysis of Structural Characteristics of Power-Split Type Planetary Gear Train (동력 분배형 유성기어열의 구조 특성 분석)

  • Lee, Ki-Hun;Lee, Geun-Ho;Bae, In-Ho;Lee, Joung-Sang;Chong, Tae-Hyong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.311-314
    • /
    • 2008
  • The volume and size of the wind turbine gearbox has been increased with increasing transmitted power. The optimal sizing of gearbox is important due to limited space on the nacelle. The power-split type planetary gear train has been regarded as a better solution than conventional type from the point of view of the volume and weight. The purpose of this paper is to optimize the volume and weight of the gearbox by the analysis of structural characteristics and evaluation of strength of the power-split type planetary gear train.

  • PDF

A New Method to Find the Best Gear Ratio Using the Simulated Annealing Algorithm (시뮬레이티드 어닐링 알고리즘을 이용한 기어열의 최적 기어비 분할법 개발)

  • 배인호;정태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.687-692
    • /
    • 2002
  • This paper reviews the existing methods to divide the gear ratios of a multi-stage gear train, and proposes a simulated annealing-based algorithm to find the best gear ratios. The existing methods have their own limitations to be used in practical design, and are also problematic to be automated in a design system. However, the proposed algorithm is a general one which can be applied to gear trains having any number of stages, and offers a satisfactory result in a very short time. It is expected to be useful as a design sub-module of the design system for multi-stage gear drives.

  • PDF

Vibration characteristics of power differential gear train for 2.5MW wind turbine (2.5MW 풍력발전기 동력분기식 기어트레인의 진동특성)

  • Kim, Jung Su;Park, No Gill;Lee, Hyoung Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.253-261
    • /
    • 2014
  • In this paper, vibration analysis of power differential gear train for 2.5MW wind turbine system is analyzed. which system is composed of two planetary gear set, one helical gear set and main shaft that connected by flange. Planetary gear set, helical gear set, main shaft are modeled in MASTA program and housing, torque arm, carrier, flange components are modeling by finite element method. Each models are combined by component mode superposition. To analysis of natural vibration characteristic about 2.5MW wind turbine gear train was performed and check about critical speed with wind load, mass unbalance, angle misalignment excitation frequency.

Gear Train Control in the Automobile (차량용 복합 기어열 제어)

  • Han, Chang-Woo;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • Gear train in the automobile to be used for controlling gas flow in automobiles consists of spur gears with involute tooth type in multiple stages. This spur gear is designed considering to the high power transfer efficiency, bending stress and contact stress in the static and dynamic analysis. The torque has been increased simultaneously the angular velocity has been decreased through the stages after being supplied by AC synchronous motor. This apparatus is controlled by electrical devices such as the PIC microprocessor, hall sensor and other electric components. By comparing the preset data of PIC microcomputer which is supplied by external DC electric power with the value set of hall sensor which detects the rotation angle position, PIC microcomputer thus controls AC motor and gear train according to the program algorithm which includes the on-off control and PWM motor driving method. As the result of the experiment such as performance, fatigue, torque test, we can conclude that this system is superior to the same and familiar foreign systems.

  • PDF

Vibration Analysis of a Gear Train - Spindle System for an NC Lathe Gear Box (NC선반 기어박스의 기어열 - 축계 진동해석)

  • 최영휴;박선균;배병태;정택수;김청수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.216-221
    • /
    • 2000
  • In this study, two mathematical models are first constructed to analyze vibration characteristics of a gear train - spindle system of an NC lathe gear box. One is a lumped parameter model which is used for calculating natural frequencies of the torsional vibration, the other is a finite element model for analyzing lateral vibration and critical speeds of the spindle system. In addition, this study examines some possible resonance conditions such as gear mesh frequencies, 1X shaft rpm frequencies over whole operating speed range, and so on. The results may be helpful to design a machine tool gear box with low noise and vibration.

  • PDF

A Study on the Vibration of 2-Stage Gear System Considering the Change of Gear Meshing Stiffness and Imbalance of Motor (기어 물림부의 스프링강성 변화와 구동기의 불균형을 고려한 2단 기어장치의 진동에 관한 연구)

  • 정태형;이정상;최정락
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.8-14
    • /
    • 2001
  • We develop a method to analyze dynamic behavior off multi-stage gear train system. The example system consists of three shafts supported by ball bearings at the ends of them and two pairs of spur gear set. For exact analysis, the meshing tooth pair of gear set is modeled as spring and damper having time-dependent meshing stiffness and damping. The bearing is modeled as spring. The result of this analysis is compared to that of other model having mean mesh stiffness. The effect of the excitation force by the unbalance off rotor off motor is also analyzed. Finally, the change ova natural frequency of the whole system due to the change of an angle between three shafts is compared in each case, and from this analysis, the avoiding angle for design is advised.

  • PDF

The Critical Speed Analysis of the Differential Planetary Gear Train of a Concrete Mixer Truck Mixer Reducer (콘크리트 믹서 트럭용 믹서 감속기의 차동 유성 기어 트레인에 대한 위험속도 해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Kim, Dang Ju
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The power train of a concrete truck mixer reducer includes differential planetary gears to get a large reduction ratio for operating the mixer drum in a compact structure. These differential planetary gears are a very important part of the mixer reducer where strength problems are the main concern. Gear bending stress, gear compressive stress and scoring failure are the main concerns. Many failures in differential planetary gears are due to the insufficient gear strength and resonance problems caused by major excitation forces such as gear mating failure in the transmission. In the present study, where the excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate differential planetary gear critical speeds. Mode shapes and natural frequencies of the differential planetary gears are calculated by CATIA V5. These are used to predict gear resonance failures by comparing the working speed range with the critical speeds due to the gear transmission errors of the differential planetary gears.

Study on Design Characteristics of Gearbox for Wind Turbine Considering the Type of Gear Train (기어열의 형태를 고려한 중대형 풍력 발전기용 기어박스의 설계 특성 연구)

  • Lee, Ki-Hun;Park, Jae-Hee;Lee, Geun-Ho;Nam, Yong-Yun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.387-390
    • /
    • 2007
  • The gearbox for wind turbine have been increased the size by the wind turbine is needed to produce bigger power. The optimal sizing for gearbox is demanded because of limited space on the nacelle. The volume and weight for the gearbox are influenced especially for size of it. Therefore, the purpose of this study investigates the design characteristics considering types of gear train structure for optimizing the volume and weight of the gearbox.

  • PDF

An Experimental Study on the Dynamic Characteristics of a Planetary Gear Train in the Low Speed Region (유성치차열의 저속영역에서의 동특성에 관한 실험적 연구)

  • Lee, J. H.;Cheon, G. J.;Kim, J. H.;Kim, C.;Han, D. C.;Myung, J. H.;Jeong, T. H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.121-129
    • /
    • 1997
  • Gear train system test rig of power circulating type was fabricated, and systematic experiment for measuring dynamic characteristics of the planetary gear trains in the low speed region has been carried out using the test rig. The measured parameters are fillet strains of the sun gear and ring gear, carrier displacements, torques of the input and output shafts. The results are as follows : i) Even though the loading torque is constant, torque variation has been observed on the input and output hafts, ii) The variation of the torque has two frequency components, i.e. lower one of the input shaft rotation and higher one of the two teeth meshing, iii) The variation of the fillet strains shows the same tendency as that of the torque, iv) The loci of the carrier depend on the torque and rotational speed.

  • PDF