• 제목/요약/키워드: gauss sums over galois rings

검색결과 4건 처리시간 0.019초

GAUSS SUMS OVER GALOIS RINGS OF CHARACTERISTIC 4

  • Oh, Yunchang;Oh, Heung-Joon
    • Korean Journal of Mathematics
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2001
  • In this paper, we define and study Gauss sums over Galois rings of characteristic 4. In particular, we give the absolute value of Gauss sum over Galois rings of characteristic 4.

  • PDF

THE GAUSS SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Jang, Young Ho;Jun, Sang Pyo
    • Korean Journal of Mathematics
    • /
    • 제26권3호
    • /
    • pp.519-535
    • /
    • 2018
  • Let ${\mathcal{R}}$ denote the Galois ring of characteristic $p^n$, where p is a prime. In this paper, we investigate the elementary properties of Gauss sums over ${\mathcal{R}}$ in accordance with conditions of characters of Galois rings, and we restate results for Gauss sums in [1, 2, 3, 7, 12, 13]. Also, we compute the modulus of the Gauss sums.

REMARKS ON GAUSS SUMS OVER GALOIS RINGS

  • Kwon, Tae Ryong;Yoo, Won Sok
    • Korean Journal of Mathematics
    • /
    • 제17권1호
    • /
    • pp.43-52
    • /
    • 2009
  • The Galois ring is a finite extension of the ring of integers modulo a prime power. We consider characters on Galois rings. In analogy with finite fields, we investigate complete Gauss sums over Galois rings. In particular, we analyze [1, Proposition 3] and give some lemmas related to [1, Proposition 3].

  • PDF

THE JACOBI SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Jang, Young Ho
    • 대한수학회지
    • /
    • 제57권3호
    • /
    • pp.571-583
    • /
    • 2020
  • The Galois ring R of characteristic pn having pmn elements is a finite extension of the ring of integers modulo pn, where p is a prime number and n, m are positive integers. In this paper, we develop the concepts of Jacobi sums over R and under the assumption that the generating additive character of R is trivial on maximal ideal of R, we obtain the basic relationship between Gauss sums and Jacobi sums, which allows us to determine the absolute value of the Jacobi sums.