• Title/Summary/Keyword: gate-underlap design

Search Result 4, Processing Time 0.018 seconds

Non-Overlapped Single/Double Gate SOI/GOI MOSFET for Enhanced Short Channel Immunity

  • Sharma, Sudhansh;Kumar, Pawan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.136-147
    • /
    • 2009
  • In this paper we analyze the influence of source/drain (S/D) extension region design for minimizing short channel effects (SCEs) in 25 nm gate length single and double gate Silicon-on-Insulator (SOI) and Germanium-on-Insulator (GOI) MOSFETs. A design methodology, by evaluatingm the ratio of the effective channel length to the natural length for the different devices (single or double gate FETs) and technology (SOI or GOI), is proposed to minimize short channel effects (SCEs). The optimization of non-overlapped gate-source/drain i.e. underlap channel architecture is extremely useful to limit the degradation in SCEs caused by the high permittivity channel materials like Germanium as compared to that exhibited in Silicon based devices. Subthreshold slope and Drain Induced Barrier Lowering results show that steeper S/D gradients along with wider spacer regions are needed to suppress SCEs in GOI single/double gate devices as compared to Silicon based MOSFETs. A design criterion is developed to evaluate the minimum spacer width associated with underlap channel design to limit SCEs in SOI/GOI MOSFETs.

2D Quantum Effect Analysis of Nanoscale Double-Gate MOSFET (이차원 양자 효과를 고려한 극미세 Double-Gate MOSFET)

  • Kim, Ji-Hyun;Son, Ae-Ri;Jeong, Na-Rae;Shin, Hyung-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.15-22
    • /
    • 2008
  • The bulk-planer MOSFET has a scaling limitation due to the short channel effect (SCE). The Double-Gate MOSFET (DG-MOSFET) is a next generation device for nanoscale with excellent control of SCE. The quantum effect in lateral direction is important for subthreshold characteristics when the effective channel length of DG-MOSFET is less than 10nm, Also, ballistic transport is setting important. This study shows modeling and design issues of nanoscale DG-MOSFET considering the 2D quantum effect and ballistic transport. We have optimized device characteristics of DG-MOSFET using a proper value of $t_{si}$ underlap and lateral doping gradient.

Rigorous Design of 22-nm Node 4-Terminal SOI FinFETs for Reliable Low Standby Power Operation with Semi-empirical Parameters

  • Cho, Seong-Jae;O'uchi, Shinichi;Endo, Kazuhiko;Kim, Sang-Wan;Son, Young-Hwan;Kang, In-Man;Masahara, Meishoku;Harris, James S.Jr;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.265-275
    • /
    • 2010
  • In this work, reliable methodology for device design is presented. Based on this method, the underlap length has been optimized for minimizing the gateinduced drain leakage (GIDL) in a 22-nm node 4-terminal (4-T) silicon-on-insulator (SOI) fin-shaped field effect transistor (FinFET) by TCAD simulation. In order to examine the effects of underlap length on GIDL more realistically, doping profile of the source and drain (S/D) junctions, carrier lifetimes, and the parameters for a band-to-band tunneling (BTBT) model have been experimentally extracted from the devices of 90-nm channel length as well as pnjunction test element groups (TEGs). It was confirmed that the underlap length should be near 15 nm to suppress GIDL effectively for reliable low standby power (LSTP) operation.

Optimizing Effective Channel Length to Minimize Short Channel Effects in Sub-50 nm Single/Double Gate SOI MOSFETs

  • Sharma, Sudhansh;Kumar, Pawan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.170-177
    • /
    • 2008
  • In the present work a methodology to minimize short channel effects (SCEs) by modulating the effective channel length is proposed to design 25 nm single and double gate-source/drain underlap MOSFETs. The analysis is based on the evaluation of the ratio of effective channel length to natural/ characteristic length. Our results show that for this ratio to be greater than 2, steeper source/drain doping gradients along with wider source/drain roll-off widths will be required for both devices. In order to enhance short channel immunity, the ratio of source/drain roll-off width to lateral straggle should be greater than 2 for a wide range of source/drain doping gradients.