• Title/Summary/Keyword: gastrocnemius

Search Result 624, Processing Time 0.026 seconds

Fuctional Relationship between Rate of Fatty Acid Oxidation and Carnitine Palmitoyl Transferase I Activity in Various Rat Tissues

  • Cho, Yu-Lee;Do, Kyung-Oh;Kwon, Tae-Dong;Jang, Eung-Chan;Lee, Keun-Mi;Lee, Suck-Kang;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.207-210
    • /
    • 2003
  • Lipids play many structural and metabolic roles, and dietary fat has great impact on metabolism and health. Fatty acid oxidation rate is dependent on tissue types. However there has been no report on the relationship between the rate of fatty acid oxidation and carnitine transport system in outer mitochondrial membrane of many tissues. In this study, the rate of fatty acid oxidation and carnitine palmitoyltransferase (CPT) I activity in the carnitine transport system were measured to understand the metabolic characteristics of fatty acid in various tissues. Palmitic acid oxidation rate and CPT I activity in various tissues were measured. Tissues were obtained from the white and red skeletal muscles, heart, liver, kidney and brain of rats. The highest lipid oxidation rate was demonstrated in the cardiac muscle, and the lowest oxidation rate was in brain. Red gastrocnemius muscle followed to the cardiac muscle. Lipid oxidation rates of kidney, white gastrocnemius muscle and liver were similar, ranging from 101 to 126 DPM/mg/hr. CPT I activity in the cardiac muscle was the highest, red gastrocnemius muscle followed by liver. Brain tissue showed the lowest CPT I activity as well as lipid oxidation rate, although the values were not significantly different from those of kidney and white gastrocnemius muscle. Therefore, lipid oxidation rate was highly (p<0.001) related to CPT I activity. Lipid oxidation rate is variable, depending on tissue types, and is highly (p<0.001) related to CPT I activity. CPT I activity may be a good marker to indicate lipid oxidation capacity in various tissues.

Influences of Short-term High-heeled Walking on the Activities of Ankle-stabilizing Muscles in Healthy Young Females (단시간 하이힐 보행이 젊은 여성의 발목 주위근의 근 활성도에 미치는 영향)

  • Kim, Eun-ji;Jeon, Seol-bin;Jeong, Ki-yong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.21 no.2
    • /
    • pp.39-46
    • /
    • 2015
  • Background: The purpose of this study was to investigate the influence of short-term treadmill walking with high-heeled shoes on electromyography activities of the medial gastrocnemius, lateral gastrocnemius and tibialis anterior in healthy young females. Methods: Fifteen healthy females were recruited for this study. To measure muscle activation, the subjects were asked in random order to walk on a treadmill using either high-heeled shoes or barefoot conditions. The shoe heel height for high-heeled walking was 7 cm. The walking speed on the treadmill was 4 km/h, and the inclination rate of the treadmill was 10%. The subjects performed treadmill walking in the barefoot and high-heeled walking conditions for 5 minutes. Electromyography data were collected from the tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and soleus on both firm and foam surfaces and during eyes-open and-closed conditions while standing. Results: Tibialis anterior activity was significantly different before and after the walking task while standing on a foam surface with eyes closed (p<.05). Conclusion: This finding suggests that the activity of the tibialis anterior may be lowered after high-heeled walking. Therefore, high-heeled shoes contribute to harmful effects at the ankle joints, increasing the risks of falling and musculoskeletal injury.

  • PDF

Effect of Shoes Sole Form on Knee and Ankle Muscle Activity (신발 밑창 형태가 무릎 및 발목 근육의 근활성화에 미치는 영향)

  • Yoon, Se-Won;Lee, Jeong-Woo;Choi, Mung-Sim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.4
    • /
    • pp.347-354
    • /
    • 2014
  • PURPOSE: This study was to examine changes in muscle activity of lower extremity shoes sole form (high heels, shoes with curved out sole, house shoes). METHODS: The subjects of this study were 12 women in their twenties. They put three kinds of shoes (high heels, shoes with curved out sole, house shoes) and walked 5m. The muscles activities of lower extremity muscles (rectus femoris, vastus medialis, tibialis anterior, gastrocnemius medial part) were measured using a wireless electromyogram (EMG). Rectus femoris was attached to 1/2 position at the distance between ASIS and knee bone and vastus medials was attached to 2cm from upper inside of knee bone. Tibialis anterior was attached to 75% position above line connecting knee joint and ankle joint and gastrocnemius medial part was attached to 3 5% position above knee joint and ankle. RESULTS: It was found that there were significant differences in changes of muscles activities of lower extremity muscles (rectus femoris, vastus medialis, tibialis anterior, gastrocnemius medial part) on shoes sole forms (p<.05). All lower extremity muscles were showed high muscles activities, when high heels wear (p<.05). Wearing shoes with curved out sole was showed high muscle activity of tibialis anterior and lower muscle activity of gastrocnemius medial part compared with wearing house shoes (p<.05). CONCLUSION: Shoes sole form should be considered when patients with knee and ankle joint problems choose shoes because muscles were showed different activities according to shoes sole forms.

Change of ${\alpha}$-motor Neuron Excitability by Taping Across a Muscle (근육 횡방향 테이핑에 의한 ${\alpha}$-운동 신경원 흥분 변화)

  • Kim, Jong-Soon;Kim, Nan-Soo;Lee, Hyun-Ok
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.4
    • /
    • pp.527-534
    • /
    • 2010
  • Purpose : The application of tape to modulation of pain and muscular excitability has become common clinical practice among musculoskeletal physical therapy. However, the techniques of the tape application has been relied on empirical evidence in preference to the neurophysiological evidence. Thus, the mechanism of taping has to be elucidated further. The aim of this study was to determine whether elastic and non-elastic taping across a muscle does indeed change ${\alpha}$-motor neuron excitability. Methods : The study was performed on 10 neurologically healthy adults. Two different types of tape were applied to skin overlying gastrocnemius. The elastic tape stretched up to 120% of its original length but non-elastic tape didn't stretched up of its original length. The tape applied across the direction on thickest part of the gastrocnemius. The ${\alpha}$-motor neuron excitability of the gastrocnemius was assessed using the gastrocnemius H-reflex. The amplitude of the M-wave and H-reflex were measured across three conditions: before tape application, with tape and with the tape removed. Results : No significant changes of the excitability of the ${\alpha}$-motor neuron were obtained across three condition, either in the elastic and non-elastic tape. Conclusion : From the results, I could come to the conclusion that further clinical work will be required.

Usefulness of Myotonometer for Measurement of Tissue Compliance on Medialis Gastrocnemius in Patients with Stroke (뇌졸중 환자에서 내측 비복근의 조직탄성 측정을 위한 Myotonometer의 유용성)

  • Bae, Sea-Hyun;Lee, Jeong-In;Kim, Kyung-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1129-1137
    • /
    • 2012
  • The aim of this study was to find useful parameters of the between myotonometer and surface electromyography(sEMG) on the medialis gastrocnemius of stroke patients and investigate between these parameters and modified Ashworth scale(MAS) relationship. 5 years clinical experience physical therapist using the Modified Ashworth Scale(MAS) was selected 15 patients with ankle spasticity and divided randomly MAS2, MAS3, MAS4 groups. Myotonometer and sEMG was measured during relaxed and maximum voluntary contractions of the gastrocnemius muscle. The results of this study, the higher MAS score was the lowered the relaxation and contraction state tissue compliance and muscle activity and in the correlation analysis the higher MAS score during voluntary contraction in the cylinder receiving low-intensity correlation could see that increased than relaxation. Therefore, the myotonometer is a useful clinical and research tool with spasticity muscle and can provide objective quantitative data about the efficacy of physical therapy interventions.

The Study on effect of the Muscle Activities for Dietshoes (Backless) (다이어트신발(Barkless)이 근육 활성도에 미치는 영향에 관한 연구)

  • Lee, Chang-Min;Oh, Yeon-Ju;Lee, Kyung-Deuk;Park, Seung-Bum;Lee, Hoon-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.117-124
    • /
    • 2006
  • The modern convenient life formed by industrial development becomes lack of exercise and takes an interest in diet. Specially, professional walking shoes is developed as people take an interest in jogging, Those shoes, professional walking shoes or Dietshoes, increase exercise effects by change of heel types. Therefore, this study investigated motility effects by EMG experiment in order to measure Muscle Activities (MA) while wearing diet shoes (backless). Experiment was conducted by EMG measurement, from calf (gastrocnemius muscle), thigh (vastus muscle) and waist (erector spinae muscle), of 12 high school students. Exercise effects between the two shoes were analyzed by EMG (MF; Median Frequency, MPF; Mean Power Frequency, ZCR; Zero Crossing Rate). Results showed that the Dietshoes(MF: 48.21Hz, MPF: 65.0Hz, ZCR: 100.6Hz) had larger EMG value than that of Normal shoes(MF: 40.47Hz, MPF: 58.04Hz, ZCR: 82.09Hz). Also, in MA, the highest activities are showed in the calf, the second one is in waist, and last one is in thigh during gate. ANOVA between shoes in measurement parts showed significant effects in MF (gastrocnemius: p-value=.022, vastus laterals: p-value=.037, erector spinae: p-value=.082), MPF (gastrocnemius: p-value=.032, vastus laterals: p-value=.046, erector spinae: p-value=.090), and ZCR (gastrocnemius: p-value=.000, vastus laterals: p-value=.004, erector spinae: p-value=.134). And MA of Dietshoes is higher than that of Normal shoes, and decreasing rate of MA in Dietshoes is less than that of Normal shoes. Thus, this study validates exercise effects of Dietshoes.

Effects of Exercise before Steroid Treatment on Type I and Type II Hindlimb Muscles in a Rat Model (스테로이드치료 전 운동이 스테로이드 치료에 의해 유발된 쥐의 위축 Type I, II 뒷다리근육에 미치는 효과)

  • Choe, Myoung-Ae;An, Gyeong-Ju
    • Journal of Korean Academy of Nursing
    • /
    • v.37 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • Purpose: The purpose of this study was to examine the effects of daily exercise before steroid treatment on mass, the type I and II fiber cross-sectional area, and myofibrillar protein content of hindlimb muscles in a rat model. Method: Adult male Sprague-Dawley rats were randomly assigned to one of three groups: a control group(n=10) that had a normal saline injection for 7days, a steroid group(n=10) that had a steroid injection for 7days, and an exercise-steroid group(n=10) that ran on the treadmill for 7days before a steroid treatment. Body weight and food intake were measured every day. At 15 days all rats were anesthetized and the soleus, plantaris and gastrocnemius muscles were dissected. Result: The exercise-steroid group showed significant increases as compared with the steroid group in body weight, muscle weight of the soleus and gastrocnemius, type II muscle fiber cross-sectional area of plantaris, and myofibrillar protein content of the soleus, plantaris, and gastrocnemius. As compared with the control group, the steroid group showed significant decreases in body weight and diet intake, muscle weight, the type II fiber cross-sectional area and myofibrillar protein content of the soleus, plantaris, and gastrocnemius muscles. Conclusion: Daily exercise before steroid treatment attenuates hindlimb muscle atrophy, with type II muscle changes more apparent than type I muscle changes.

Effect of Exercise with Functional Electrical Stimulation and Transcutaneous Electrical Nerve Stimulation on Muscle Tone, Stiffness of Calf Muscle, and Balance Ability in Patients with Stroke (치료적 운동에 기능적 전기자극과 경피신경전기자극 결합이 뇌졸중 환자의 근긴장도 및 뻣뻣함, 균형능력에 미치는 영향)

  • Park, Shin-Jun;Cho, Kyun-Hee;Cho, Yong-Hun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.2
    • /
    • pp.43-52
    • /
    • 2017
  • PURPOSE: This study aimed to compare the impact of exercise with that of functional electrical stimulation (FES) and transcutaneous electrical nerve stimulation (TENS) on muscle tone, calf muscle stiffness, and balance ability in patients with stroke. METHODS: Thirty patients with stroke were randomly divided into an FES group (n=15) and a TENS group (n=15), and a progressive task-oriented exercise was assigned to them. These exercises were performed non-synchronously from December 5, 2016 to January 31, 2017. Patients underwent TENS and simultaneously exercised for 30 minutes daily, 5 times a week for 4 weeks. To determine the effect of the interventions, muscle tone and stiffness of the medial and lateral region of gastrocnemius muscle were measured using the MyotonPRO instrument and balance was assessed using the Berg Balance Scale. RESULTS: Both groups revealed a significant decrease in muscle tone and stiffness of the medial part of gastrocnemius muscle before and after the interventions (p<.05). Berg Balance Scale scores increased significantly (p<.05). However, none of the other parameters were significantly different (p>.05). CONCLUSION: Our results prove that progressive task-oriented exercise along with FES and TENS decreases muscle tone and stiffness of the gastrocnemius muscle in patients with stroke and improves balance. TENS could serve as a complementary replacement for functional electrical stimulation for in-house training, as TENS poses less risk of muscle fatigue and has lesser contraindications than does functional electrical stimulation.

Effect of the Instrument Assisted Soft Tissue Mobilization and Static Stretching on the Range of Motion and Plantar Foot Pressure of an Ankle Joint (도구를 이용한 연부조직가동술과 정적 스트레칭이 족저압과 발목관절 가동범위에 미치는 영향)

  • Lee, Jae-hong;Lee, Jin-hwan;Min, Dong-ki;Kim, Kwang-su;Kim, Jong-woo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.23 no.2
    • /
    • pp.27-32
    • /
    • 2017
  • Background: The purpose of this study was to compare the effects of IASTM and static stretching techniques on ankle joint range of motion (ROM), static foot pressure. Methods: Twenty four subjects with gastrocnemius shortness participated in this study. The subjects were assigned randomly to one of two groups: The soft tissue mobilization technique (IASTM) group received intervention using a IASTM instrument for two minutes, and the stactic stretching group performed self stretching for 30 seconds, four times. The ROM of the ankle joint was measured by active ankle dorsi-flexion test, and a TPScan was utilized to collect the plantar foot pressure. This experiment was performed by two physical therapists. The significant level was set at ${\alpha}=.05$. Results: The results were as follows: 1) The ROM of the ankle joint and was significantly increased in both groups. 2) Plantar foot pressure was no significant in both groups. 3) There were no significant differences between the IASTM group and static stretching group for any variable. Conclusions: The results of this study suggest that static stretching is an effective and easy technique for restoring proper muscle length in subjects with gastrocnemius shortness. We recommend that static stretching technique be used for treat gastrocnemius shortness in clinical setting and home program.

  • PDF

Leg Muscle Activity from the Perturbation of the Support during Gait (보행 시 지지 기반 급변에 대한 하지 근신경의 반응)

  • Shin, In-Sik;Chun, Young-Jin;Seo, Jung-Seok;Choi, Chi-Sun;Nam, Ki-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.147-154
    • /
    • 2007
  • This study's purpose is to investigate the effects on leg muscle activity caused by perturbation, using a trapdoor system during the support phase of gait for healthy adults (n = 6, height $177.5{\pm}5.5cm$, weight $81.0{\pm}9.5kg$, age $30.0{\pm}3.3yrs$). The trapdoor had the functional ability of causing inversion or eversion. The release time for the trapdoor was specified for two times, 0.3 and 0.5 seconds after heel contact. While altering these variables, EMG was recorded for the leg muscles (rectus femoris, biceps femoris, vastus lateralis, tibialis anterior, gastrocnemius, soleus). The following conclusions were derived. The steptime was longer for the 0.5s eversion than 0.3s inversion condition. So in order to regain stability after the perturbation the unsupporting leg reached forward rapidly. This quick reflex can be observed through the center of pressure (COP) and its rapid change in direction. The gastrocnemius was activated throughout the total experiment. There was a low amount of activity recorded in the rectus femoris, vastus lateralis and tibialis anterior except for the condition of inversion 0.3s. For most of the conditions, the highest average EMG peak values were recorded during the condition of inversion 0.3s. The iEMG patterns were similar for the conditions of inversion 0.3s and eversion 0.3s. To cope with the rapid change in these conditions, the biceps femoris was activated. During the experiment except for the condition of normal gait, the activity of the soleus and gastrocnemius was relatively high. Therefore, to prevent injury from perturbation of the lower leg strengthening of the soleus and gastrocnemius is required. Likewise to prevent injury to the thigh strengthening for the biceps femoris.