• Title/Summary/Keyword: gasoline direct injection engine

Search Result 150, Processing Time 0.022 seconds

A PARAMETRIC SENSITIVITY STUDY OF GDI SPRAY CHARACTERISTICS USING A 3-D TRANSIENT MODEL

  • Comer, M.A.;Bowen, P.J.;Sapsford, S.M.;Kwon, S.I.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.145-153
    • /
    • 2004
  • Potential fuel economy improvements and environmental legislation have renewed interest in Gasoline Direct Injection (GDI) engines. Computational models of fuel injection and mixing processes pre-ignition are being developed for engine optimisation. These highly transient thermofluid models require verification against temporally and spatially resolved data-sets. The authors have previously established the capability of PDA to provide suitable temporally and spatially resolved spray characteristics such as mean droplet size, velocity components and qualitative mass distribution. This paper utilises this data-set to assess the predictive capability of a numerical model for GDI spray prediction. After a brief description of the two-phase model and discretisation sensitivity, the influence of initial spray conditions is discussed. A minimum of 5 initial global spray characteristics are required to model the downstream spray characteristics adequately under isothermal, atmospheric conditions. Verification of predicted transient spray characteristics such as the hollow-cone, cone collapse, head vortex, stratification and penetration are discussed, and further improvements to modelling GDI sprays proposed.

Visualization and Numerical Analysis of Non-evaporating Spray with a Swirl-Type GDI Injector (GDI 와류 분사노즐에 의한 비증발 분무의 가시화 및 수치해석)

  • 원영호;강수구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.22-28
    • /
    • 2003
  • Predictions of the fuel spray dispersion and mixing processes are very important to improve the fuel consumption and exhaust emissions in GDI engines. Numerical and experimental analysis of the sprays with a swirl injector have been conducted. A numerical analysis is carried out using KIVA-II code with modified spray models. Experimental measurements are performed to show the global spray images and the local images near nozzle tip using laser sheet visualization technique. Computed and measured spray characteristics such as spray width, tip penetration are compared, and good agreements can be achieved. The spray head vortex is stronger as the injection pressure increases, but numerical calculations cannot show the head vortex properly.

Identification of Airborne-noise Source and Analysis for Noise Source Contribution of a GDI Engine Using Sound Intensity Method (음향 인텐시티법을 이용한 GDI 엔진 소음원 규명 및 소음 기여도 분석에 관한 연구)

  • Kim, Byung-Hyun;Lee, Sang-Kwon;Yoon, Joon-Seok;Shin, Ki-Chul;Lee, Sang-Jik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.985-993
    • /
    • 2012
  • In this paper, a new method is proposed to estimate the sound pressure generated from gasoline direct injection (GDI) engine. There are many noise sources as much as components in GDI engine. Among these components, fuel pump, fuel injector, fuel rail, pressure pump and intake/exhaust manifolds are major components generated from top of the engine. In order to estimate the contribution of these components to engine noise, the total sound pressure at the front of the engine is estimated by using airborne source quantification (ASQ) method. Airborne source quantification method requires the acoustic source volume velocity of each component. The volume velocity has been calculated by using the inverse method. The inverse method requires many tests and has ill-condition problem. This paper suggested a method to obtain volume velocity directly based on the direct measurement of sound intensity and particle velocity. The method is validated by using two known monopole sources installed at the anechoic chamber. Finally the proposed method is applied to the identification and contribution of noise sources caused by the GDI components of the test engine.

A Study on the CAI Combustion Characteristics and Stratified Combustion to Extend the Operating Region Using Direct Injection Gasoline Engine (직접분사식 가솔린 엔진을 이용한 CAI 연소특성 및 운전영역 확대를 위한 성층 연소 특성에 관한 연구)

  • Lee, Chang-Hee;Choi, Young-Jong;Lim, Kyoung-Bin;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.25-31
    • /
    • 2006
  • Controlled Auto Ignition(CAI) combustion has great potential in achieving significant increase in engine efficiency, while simultaneously reducing exhaust emissions. The process itself involves the auto ignition and subsequent simultaneous combustion of a premixed charge. In this study, NVO(Negative Valve Overlap) system was applied to a CAI engine in order to use residual gas. The fuel was injected directly to the cylinder under the high temperature condition resulting from heating the intake port to initiate CAI combustion. This paper introduced the valve timing strategy and experimental set-up. From this study, the effect of engine speed and valve timing on CAI combustion and exhaust emissions was clarified. In addition, stratified charge method was used to extend CAI operating region.

A Study on the Fuel Behavior and Mixture Formation in the Early Injection Timing of GDI Injector (직분식 가솔린 인젝터의 흡입 행정 분사시의 연료 거동 및 혼합기 분포 특성에 관한 연구)

  • Lee, Chang-Hui;Lee, Gi-Hyeong;Bae, Jae-Il;Baek, Seung-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1138-1144
    • /
    • 2002
  • Recently GDI(Gasoline Direct Injection) engine is spot-lighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize this system, it is essential to make both stratified combustion and homogeneous combustion. Spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is varied with crank angle. In this experimental study, two types of visualization system such as laser scattering method and schlieren method were developed to clarity the spray behavior during on intake stroke. As the ambient pressure increases, thepenetration length and spray angle show a tendancy to decrease due to rising resistance caused by the drag force of the ambient air. Distribution of injected fuel on intake stroke has a significant effect on homogeneous mixture in the cylinder. These results provide the information on macroscopic wall-wet growth in the cylinder and design factors for developing GDI injector.

An Experimental Study on the Two Stage Ignition of Cool Flame and Hot Flame in HCCI Engine According to Fuel Composition (연료조성에 따른 HCCI 엔진의 냉염 및 열염의 2단연소 특성에 관한 실험적 연구)

  • 이기형;김형민;류재덕;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthened. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, it is well known that HCCI engines increased HC and CO. Thus, the investigation of combustion characteristics which consists cool and hot flames for HCCI engines were needed to obtain the optimal combustion condition. In this study, combustion characteristics for direct injection type HCCI engine such as quantity of cool flame and hot flame, ignition timing and ignition delay were investigated to clarify the effects of these parameters on performance. The results revealed that diesel combustion showed the two-stage ignition of cool flame and hot flame, the rate of cool flame increase and hot flame decrease with increasing intake air temperature. On the other hand, the gasoline combustion is the single-stage ignition and ignition timing is near the TDC. In addition mixed fuel combustion showed different phenomenon, which depends on the ratio of gasoline component. Ignition timing of mixed fuel is retarded near the TDC and the ignition delay is increased according to ratio of gasoline.

On-Road Investigation of PM Emissions of Passenger Vehicles Fuelled with Diesel and Gasoline Using Mobile Emission Laboratory (이동형 배출가스 측정시스템(MEL)을 이용한 디젤 및 가솔린 차량에서 배출되는 입자상 물질 평가)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Park, Jun-Hyuk;Woo, Se-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.737-744
    • /
    • 2012
  • A mobile emission laboratory (MEL) was designed to measure the amount of traffic pollutants, with high temporal and spatial resolution under real conditions. Equipment for the gas-phase measurements of CO, NOx, $CO_2$, and THC and for the measurement of the number, concentration, and size distribution of fine and ultra-fine particles by an FMPS and CPC was placed in a minivan. The exhausts of different types of vehicles can be sampled by an MEL. This paper describes the technical details of the MEL and presents data from the experiment in which a car chases passenger vehicles fuelled by diesel and gasoline. The particle number concentration in the exhaust of the diesel vehicle was higher than that of the gasoline vehicle. However, the diesel vehicle with a DPF emitted fewer particles than the vehicle equipped with a gasoline direct injection engine, with particle diameters over 50 nm.

Spray Structures and Vaporizing Characteristics of a GDI Fuel Spray

  • Park, Dong-Seok;Park, Gyung-Min;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.999-1008
    • /
    • 2002
  • The spray structures and distribution characteristics of liquid and vapor phases in non-evaporating and evaporating Gasoline Direct Injection (GDI) fuel sprays were investigated using Laser Induced Exciplex Fluorescence (LIEF) technique. Dopants were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to study internal structure of the spray, droplet size and velocity under non-evaporating condition were measured by Phase Doppler Anemometry (PDA). Liquid and vapor phases were visualized at different moments after the start of injection. Experimental results showed that the spray could be divided into two regions by the fluorescence intensity of liquid phase: cone and mixing regions. Moreover, vortex flow of vapor phase was found in the mixing region. About 5㎛ diameter droplets were mostly distributed in the vortex flow region. Higher concentration of vapor phase due to vaporization of these droplets was distributed in this region. Particularly, higher concentration of vapor phase and lower one were balanced within the measurement area at 2ms after the start of injection.

An Experimental Study on the Analysis of Liquid/Vapor Phase in GDI Spray (직접 분사식 연료 분무에서의 기.액상 분리 계측에 관한 연구)

  • Jang, S.H.;Kim, J.H.;Park, K.S.;Jin, S.H.;Kim, G.S.
    • Journal of ILASS-Korea
    • /
    • v.5 no.4
    • /
    • pp.57-65
    • /
    • 2000
  • For this research an extension of the LIF technique that the LIEF(Laser Induced Exciplex Fluorescence) technique has been used LIEF technique is the unique method to allows the visualization of fuel vapor phase and liquid phase individually by capturing each signals of them. In this work performed that the basic procedure for advanced LIEF technique using TEA and benzene as dopants md high power KrF excimer laser to excite the dopants. Iso-octane is used as the fuel because it does not absorb light at the laser wavelength. The boiling point of benzene and TEA are $81^{\circ}C\;and89^{\circ}C$, respectively, in comparison to $99^{\circ}C$ for iso-octane. It is observed that the behavior and distribution of high pressed fuel injection from various test condition. The injection pressure is set as 3MPa. and 5MPa. And the ambient pressure of test chamber is atmospheric pressure and 1MPa, the ambient temperature of chamber is room temperature, $300^{\circ}C\;and\;500^{\circ}C$ to imitate the condition of GDI engine cylinder.

  • PDF

Evaluation of EGR applicability for NOx reduction in lean-burn LPG direct injection engine (초희박 LPG 직접분사식 엔진에서 질소산화물 저감을 위한 배기재순환 적용성 평가)

  • Park, Cheolwoong;Cho, Seehyeon;Kim, Taeyoung;Cho, Gyubaek;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.22-28
    • /
    • 2015
  • In order to keep the competitiveness of LPG fuel for transportation fuel, the difference in fuel consumption with gasoline and cost for an aftertreatment system should be reduced with continuous development of technology for LPG engine. In the present study, spray-guided type direct injection combustion system, whose configuration is composed of direct injector in the vicinity of spark plug, was employed to realize stable lean combustion. A certain level of nitrogen oxides($NO_x$) emits due to a locally rich mixture regions in the stratified mixture. With the application of EGR system for the reduction of $NO_x$, 15% of $NO_x$ reduction was achieved whereas fuel consumption and hydrocarbon emission increased. By the application of EGR, the combustion speed reduced especially appeared at initial flame development period and peak heat release rates and increasing rates for heat release rate decreased as EGR rate increased due to the dilution effect of intake air.