• Title/Summary/Keyword: gasoline direct injection engine

Search Result 150, Processing Time 0.022 seconds

Study on Full Load Operation Characteristics and Thermal Efficiency of 1.4L Turbo CNG SI Engine (1.4L급 터보 CNG SI엔진의 전부하 운전 특성 및 열효율에 대한 연구)

  • Bae, Jong-Won;Park, Cheol-Woong;Lee, Jeong-Woo;Kim, Yong-Rae;Kim, Chang-Gi;Lee, Sun-Youp;Lee, Jin-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.34-39
    • /
    • 2018
  • Natural gas is attracting attention as an alternative to existing fossil fuels. Natural gas has a high octane number. Therefore, knocking does not occur even if the compression ratio is increased, so that the thermal efficiency and the output can be improved. And it is relatively easy to apply the natural gas supply system to the internal combustion engine hardware system. In this study, a gasoline direct injection turbo engine was converted into a natural gas port injection type turbo engine. Therefore, the combustion and performance of the engine are measured and compared comprehensively in the region where the turbo operates.

Experimental Research on the Power Improvement by Increasing Intake pressure in a 1.4 L Turbocharged CNG Port Injection Spark Ignition Engine (1.4L 급 터보 CNG 엔진에서 흡기압력 상승에 따른 출력 증대 효과에 관한 연구)

  • Lee, Jeong-Woo;Park, Cheol-Woong;Bae, Jong-Won;Kim, Chang-Gi;Lee, Sun-Youp;Kim, Yong-Rae
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.90-96
    • /
    • 2019
  • Natural gas has been regarded as one of major alternative fuels, because of the increment of mining shale gas and supplying PNG(Pipeline Natural Gas) from Russia. Thus, it needs to broaden the usage of natural gas as the increasing its supplement. In this situation, application of natural gas on the transport area is a good suggestion to reduce exhaust emissions such as CO2(carbon dioxides) and soot from vehicles. For this reason, natural gas can be applied to SI(spark ignition) engines due to its anti-knocking and low auto-ignitibility characteristics. Recently, since turbocharged SI engine has been widely used, it needs to apply natural gas on the turbocharged SI engine. However, there is a major challenge for using natural gas on turbocharged SI engine, because it is hard to make natural gas direct injection in the cylinder, while gasoline is possible. As a result, there is a loss of fresh air when natural gas is injected by MPI (multi-point injection) method under the same intake pressure with gasoline-fueled condition. It brings the power reduction. Therefore, in this research, intake pressure was increased by controling the turbocharger system under natural gas-fueled condition to improve power output. The goal of improved power is the same level with that of gasoline-fueled condition under the maximum torque condition of each engine speed. As a result, the maximum power levels, which are the same with those of gasoline-fueled conditions, with improved brake thermal efficiency could be achieved for each engine speed (from 2,000 to 6,000 rpm) by increasing intake pressure 5-27 % compared to those of gasoline-fueled conditions.

Development Behavior of Vaporizing Sprays from a High-Pressure Swirl Injector Using Exciplex Fluorescence Method

  • Choi, Dong-Seok;Kim, Duck-Jool;Hwang, Soon-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1143-1150
    • /
    • 2000
  • The effects of ambient conditions on vaporizing sprays from a high-pressure swirl injector were investigated by an exciplex fluorescence method. Dopants used were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to examine the behavior of liquid and vapor phases inside of vaporizing sprays, ambient temperatures and pressures similar to engine atmospheres were set. It was found that the ambient pressure had a significant effect on the axial growth of spray, while ambient temperature had a great influence on the radial growth. The spatial distribution of vapor phase at temperatures above 473K became wider than that of liquid phase after half of injection duration. From the analysis of the area ratio for each phase, the middle part (region II) in the divided region was the region which liquid and vapor phases intersect. For liquid phase, fluorescence-intensity ratio was greatly changed at lms after the start of injection. However, the ratio of vapor phase was nearly uniform in each divided region throughout the injection.

  • PDF

A study on the heat release rate pattern variation according to the change of operating conditions in pre-combution chamber type diesel engine (예연소실식 디젤기관의 운전조건변화에 따른 열발생률 형태변동에 관한 고찰)

  • 이진우;최재성;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.31-44
    • /
    • 1987
  • Nowadays, the problems of energy and environmental pollution become serious day by day and the diesel engine, which has been proved to be superior to gasoline engine with respect to fuel consumption and ecological problems of exhaust gas, has been adopted widely for various purposes from the marine diesel engine and the dynamo engine to all kinds of engine on land. Therefore, extensive parametric studies on combustion of diesel engine should be done for its desing and improvement. To predict the behavior of diesel engien according to variable operating conditions by means of cycle simulation, the reasonable pattern of heat release rate has to be asumed. But it is necessary to know the actual variation of heat release rate in order to assume the reasonable pattern of heat release rate according to the actual operating conditions. In this paper, on a high speed small bore diesel engine with pre-combustion chamber, experimental investigations were carried out to determine the relationship between the heat release pattern and parameters such as engine load and speed. And also, the theoretical investigations about the performance variations of the above diesel engine according to the predicted pattern of heat release rate variation were performed. From the above observations, it may be said that the Fanboro indicator, which was used to get the cylinder pressure, can be used to estimate a reasonable pattern of heat release rate and it is confirmed that the pattern of heat release rate for the pre-combustion type engine is different from that of the direct injection type engine.

  • PDF

Dependence of Nanoparticle and Combustion Characteristics of Gasoline Direct Injection Engines on Coolant Temperature (GDI 엔진의 냉각수온에 따른 연소성능 및 입자상 물질 배출 특성)

  • Lee, Hyo-Keun;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo;Park, Jong-Il;Han, Seung-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.131-136
    • /
    • 2012
  • This paper investigated the combustion and exhaust gas characteristics of gasoline direct injection engines for various cooling water temperature. The engine-out nanoparticle emission number and size distribution were measured by a DMS-500 equipped upstream of the catalyst. A CLD-400 and an HFR-400 were equipped at the exhaust port to analyze the cyclic NOx and total hydrocarbon emission characteristics. The results showed that the nanoparticle emission number greatly increased at low coolant temperatures and that the exhaust mainly contained particulate matter of 5.10 nm. THC also increased under low temperature conditions because of fuel film on the combustion chamber. NOx emissions decreased under high temperature conditions because of the increase in internal exhaust gas recirculation. In conclusion, an engine management system control strategy for driving coolant temperature up rapidly is needed to reduce not only THC and NOx but also nanoparticle emissions.

Effects of Ambient Conditions on the Atomization of Direct Injection Injector (분위기 조건이 직접분사식 인젝터의 미립화에 미치는 영향)

  • Lee, J.S.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 2001
  • Several efforts to meet the exhaust gas regulation have been undertaken by many researchers in recent years. Main researches are on development of design techniques of intake port and combustion chamber, atomisation of fuel and precise control of air-fuel ratio, post-treatment of exhaust gas and so on. Engine technology is changed from PFI to GDI to correspond with exhaust gas regulation. GDI technique makes it possible to preserve lean air-fuel ratio and control accurate air-fuel ratio. Nevertheless, It is not cleared that information of spray characteristics and atomization process are very dependent on fluctuation of pressure and change of temperature in intake stroke. In this study, a constant volume combustion chamber is manufactured to investigate various fluctuations of in-cylinder pressure for injection duration. It is taken photographs of injection process of conventional GDI injector using PMAS. Then, it was verified experimently that ambient conditions as temperature and pressure of combustion chamber have effects on process of spray growth and atomization of fuel.

  • PDF

Cylinder Pressure based Real-Time IMEP Estimation of Diesel Engines (실린더 압력을 이용한 디젤엔진의 실시간 IMEP 추정)

  • Kim, Do-Hwa;Oh, Byoung-Gul;Ok, Seung-Suk;Lee, Kang-Yoon;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.118-125
    • /
    • 2009
  • Calculation of indicated mean effective pressure(IMEP) requires high cylinder pressure sampling rate and heavy computational load. Because of that, it is difficult to implement in a conventional electronic control unit. In this paper, a cylinder pressure based real-time IMEP estimation method is proposed for controller implementation. Crank angle at 10-bar difference pressure($CA_{DP10}$) and cylinder pressure difference between $60^{\circ}$ ATDC and $60^{\circ}$ BTDC($DP_{deg}$) are used for IMEP estimation. These pressure variables can represent effectively start of combustion(SOC) and fuel injection quantity respectively. The proposed IMEP estimation method is validated by transient engine operation using a common-rail direct injection diesel engine.

Spray Characteristics for Specified Regions of High Pressure Swirl Injcetor in Gasoline Direct Injection Engine (가솔린 직접분사식 고압선회 분사기의 분무 영역별 분무 특성 고찰)

  • Song, Bhum-Keun;Kim, Won-Tae;Kang, Shin-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • According as the industry was developed, the pollution of the environment and atmosphere rose up to the surface. So, the focus is now concentrated on the engines of affinity for nature. And the investigators make more effort to the improvement in the performance of engines, depending to the prices of oil and the anxiety about the exhaustion of the fossil fuel go up. So the GDI engines head up for these necessities. In this experimental study, the spray flow characteristics for a commercial injector equipped in the present GDI engine were investigated, which had a strong influence on the engine performance and emissions. The experiment was performed at the injection pressures of 1, 3, 5 and 7MPa under the atmospheric condition. A PDPA system was used to specify the flow characteristics of the spray. Also, the global spray behavior classified into three regions as leading, main spray and vortex cloud region, was analyzed by using a visualization system. And the regions were compared with each other.

Effect of Premixed Fuels Charge on Exhaust Emission Characteristics of HCCI Diesel Engine (HCCI 디젤엔진의 배기특성에 미치는 예혼합 연료의 영향)

  • Kim Myung Yoon;Yoon Young Hoon;Hwang Suk Jun;Kim Dae Sik;Lee Chang Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.182-189
    • /
    • 2005
  • In order to investigate the effect of premixed gasoline, diesel fuel, and n-heptane charges on the combustion and exhaust emission characteristics in a direct injection (DI) diesel engine, the experimental studies are performed. The premixed fuels are injected into the premixing chamber that installed upstream of the intake port in order to minimize the inhomogeneity effect of premixed charge. The injection nozzle for directly injected fuel is equipped in the center of the combustion chamber. The air temperature control system is equipped in the intake manifold to examine the effect of air temperature. The experimental results of this study show premixing fuel is effective method to reduce the NOx and soot emissions of diesel engine. NOx emissions are linearly decreased with increasing premixed ratio for the three kinds of premixed fuels. The heating of intake air $(80^{\circ}C)$ reduced the deterioration of BSFC in high premixed ratio, because it promotes evaporation of premixed diesel droplet in the premixing chamber.

A Study on the Injection Characteristics of Direct Injection CNG Fuel (직접분사 CNG 연료의 분사특성에 관한 연구)

  • Lee, S.W.;Rogers, T.;Petersen, P.;Kim, I.G.;Kang, H.I.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.643-647
    • /
    • 2014
  • Two types of fuel supply method ar used in CNG vehicles. One is premixed ignition and the other is gas-jet ignition. In premixed ignition, the fuel is introduced with intake air so that homogeneous air-fuel mixture may form. The ignitability of this method depends on the global equivalence ratio. In gas-jet ignition, CNG is introduced directly into the engine combustion chamber. The overall mixture is stratified by retarded fuel injection. In this study, a visualization technique was employed to obtain fundamental properties regarding overall mixture formation of direct injected CNG fuel inside a constant volume chamber. Jet angles, penetrations and projected jet area with respect to ambient pressure are investigated. The penetration decreases apparently and the time reaching the CVC wall was delayed as the chamber pressure increases. This is caused by the higher inertia of the fluid elements that the injected fluid must accelerate and push aside. It is same to liquid fuel such as diesel and gasoline, but this phenomenon is far more prominent for the gaseous fuel.