• Title/Summary/Keyword: gasoline contamination

Search Result 38, Processing Time 0.03 seconds

Effect of soil Venting on Dissolution Potential of Gasoline Components in Contaminated Soil: Experimental Observation (Soil Venting이 오염토양중 가솔린 성분의 용출성에 미치는 영향: 1. 실험적 고찰)

  • 염익태;이상현;안규홍
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.53-60
    • /
    • 1998
  • The influence of venting on the leaching characteristics of pure gasoline and gasoline contaminated soil was studied. The change of leaching characteristics by venting of contaminated soil column could be characterized by two distinct trends : 1) the leaching concentration in TPH-GRO rapidly decreased with evaporation until the evaporation loss became 75% of the original volume. Afterwards, it gradually decreased. 2) the leaching concentrations of individual components showed initial increase followed by gradual decrease. In general, the relative increase of leaching concentration and the venting time to reach the maximum increased with the molecular weight of the components. It should be noted that the decrease of gasoline concentration in the vented air occurs faster than that in the leaching solution. This indicates that, after removing most of the gasoline by evaporation, the focus of the risk assessment for the residual contaminants should be on the groundwater contamination rather than air pollution.

  • PDF

Effect of soil Venting on Dissolution Potential of Gasoline Components in Contaminated Soil : 2. Modeling Approach (Soil Venting이 오염토양중 가솔린 성분의 용출성에 미치는 영향: 2. 모델링 접근)

  • 염익태;이상현;허상철;안규홍
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.11-20
    • /
    • 1998
  • The effects of soil venting on the leaching potential of residual gasoline were characterized by applying a simple multi-component volatilization/dissolution model based on Raoult's law. The validity of Raoult's law in describing dissolution of gasoline was evaluated separately using both pure gasoline and gasoline contaminated soil. The aqueous concentrations of gasoline components equilibrated with pure gasoline could be described by Raoult's law within one order of magnitude, regardless of the composition of the gasoline. The leaching concentrations from contaminated soil could be well predicted at a relatively high gasoline concentration in soil. However, after 93.5% removal of gasoline by venting, the calculated values were higher than the experimental values by 50∼100%. A model involving multi-component evaporation and dissolution was applied and the results were compared with the experimental values. Possible causes of the discrepancy between the predicted values and experimental values were given.

  • PDF

MTBE에 의한 지하수 오염

  • 조종수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.9-12
    • /
    • 2001
  • MTBE is a gasoline additive which is widely used in the world. Its use on the air pollution reduction has been proved very effective, but has generated serious problems of groundwater contamination. Its use will be banned gradually by US EPA and other states governments in US. In Korea, it has been used since 1987 and its consumption reaches about 700, 000 tons/year. Any problems related to the groundwater contamination has not been reported in Korea, yet due to the lack of investigation. In this presentation, I raise the MTBE problems with examples of MTBE contaminations in the US.

  • PDF

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

Washing effect of fingermark contaminated with flammable liquids (인화성액체에 오염된 지문의 세척 효과)

  • Ho-Won, Jang;Ji-Yun, Kwon;Hyo-Mi, Kim;Seung-Ju, Yoo;Sungwook, Hong
    • Analytical Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.237-241
    • /
    • 2022
  • The effect of washing fingerprints deposited on glass that were contaminated with a flammable liquid (gasoline, kerosene, diesel, and thinner) was studied by washing with hexane or heptane. The fingerprints were visualized using fuming cyanoacrylate, followed by basic yellow 40 staining. After comparing the washing effect, by dividing one fingerprint into four sections, it was confirmed that the ridge detail was damaged by dissolving the fingerprints in flammable liquid. As a result of washing fingerprints contaminated with flammable liquids using hexane or heptane, fingerprints contaminated with gasoline, kerosene, and thinner did not show a washing effect because the ridge detail was damaged at the time of contamination, and only fingerprints contaminated with diesel exhibited improved ridge detail quality. Because hexane and heptane washing damage the ridge detail, it was found that fingerprints contaminated with gasoline, kerosene, and thinner were better enhanced directly without the washing process. In addition, it was found that the amount of the washing solvent and contact time should be minimized when washing fingerprints contaminated with diesel.

Effect of Roadside Soil and Vegetation with Lead and Zine by Motor Vehicles (자동차 매연중의 미량금속이 토양 및 식물체에 미치는 영향)

  • 강상준
    • Journal of Plant Biology
    • /
    • v.15 no.3
    • /
    • pp.9-13
    • /
    • 1972
  • This report deals with lead and zinc contamination of roadside soil and plants caused by motor vehicles as a function of distance from the road edge. The concentrations of Pb and Zn in roadside soil and plant samples from several locations decrease regularly with increasing distance from traffic. Soil samples up to 24m distance from the road edge are contaminated with more than 12.99ppm lead, and 13.40ppm zinc. The decrease in Pb and Zn contamination with increasing distance from the road is characteristically curvilinear; the relative coefficiency of Pb and Zn with distance is -0.69, -0.48, respectively. The average contents of Pb and Zn in plants are 21.5ppm and 30.00ppm. It is suggested that the contamination is related to the composition of gasoline, motor oil and to roadside of the residues of this metals.

  • PDF

파쇄 폐타이어가 혼합된 생물학적 반응벽체에 관한 연구 : 폐타이어와 미생물의 MTBE (Methyl tertiary Butyl Ether) 흡착

  • 정수봉;이재영;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.23-26
    • /
    • 2004
  • Methyl Tertiary-Butyl Ether is one of several fuel oxygenates added to gasoline to improve fuel combustion and reduce tile resulting concentration of hydrocarbon. Thus, MTBE transfer readily to groundwater from gasoline leaking from Underground Storage Tank. Therefor, there are significant risks and costs associated with the water contamination. MTBE is far more water soluble than gasoline hydrocarbon. The purpose of the this study is to test the ability of ground tire with facultative bacteria. Bacillus brevis, to sorb MTBE. The process is consisted both batch and column experiment to determine the sorption capacity. And Biofilm is observed by SEM in the column. Finally, it is clear that ground tire represent an attractive and relatively inexpensive sorption medium for a MTBE. The authors can surmise that to determine the economic cost of ground tire utilization, tile cost to sorb a given mass of contaminant by ground tire will have to be compared to currently accepted sorption media. and Bacillus brevis strain was eliminated on MTBE, too. The biobarrier that ground tire with bacteria, has potential for use in the remediation of MTBE-contaminated environments.

  • PDF

The Deterioration of Lubricants in LPG Engine (LPG엔진에서의 윤활유 열화)

  • 류재곤;문우식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.100-106
    • /
    • 2000
  • Recently, the population of vehicles using LPG as fuel has been increasing due to relatively low fuel price and low tax. Although gasoline engine oils we usually used to lubricate LPG engines, some troubles such as oil thickening and TBN depletion were found in them under severe operating condition. In order to investigate the deterioration mechanism of lubricants in LPG engine, field trials were performed. The results from the field trials showed that the deterioration of oils in LPG engine is different from that in normal gasoline engine. LPG engine oil was deteriorated mainly through oxidation and nitration at high temperature rather than contamination of fuel combustion products.

  • PDF

Enhancement of Soil Flushing Method by Ultrasonic Radiation on Diesel Contaminated Soils (디이젤 오염토 수세시 초음파가 세척률 증가에 미치는 영향에 관한 연구)

  • 김영욱;김지형;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.401-406
    • /
    • 2000
  • Spilling of petroleum hydrocarbons such as gasoline, motor oils, and diesel fuel from underground storage tanks (USTs) is a major source of contamination to ground water and soils. In response to the need of developing an effective and economical cleanup technique, this study investigates the effectiveness of using sonication to enhance the soil flushing method. The study involves laboratory testing, and the testing was conducted using a specially designed and fabricated device to determine the effect of sonication on contaminant removal. The sonication was applied at 20 kHz frequency under different power levels. Test soil was Joomoonjin Sand, and diesel fuel was used as a contaminant of soil flushing test. The results of the investigation show that sonication enhanced the contaminant removal from soils significantly, and the degree of enhancement varied with power levels of sonication. Based on the results of the study, it is concluded that the flushing method with sonication has a great potential to become an effective method for removing petroleum hydrocarbons from the contaminated ground.

  • PDF

Extraction Characteristics and Quantitational Methods for Total Petroleum Hydrocarbons in Soil

  • Jeon, Chi-Wan;Lee, Jung-Hwa;Song, Kyung-Sun;Lee, Sang-Hak;Lee, Jung-Min
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.119-122
    • /
    • 2003
  • Quantitation methods of total petroleum hydrocarbons to determinate oil contaminated level in soil were discussed. Extraction characteristics of several pretreatment methods and practical detection limit and reappearances in gas chromatography/mass spectrometry. with each pretreatment method were investigated. The obtained results showed that the newly adopted quantitation method and mechanical shaking extraction method using methanol with extraction solvent are more practical and applicable to real sample than the conventional methods. In applying these methods to gasoline, kerosene, fuel oil which are major source of soil contamination, the practical quantitation limit and % relative standard deviation was able to determine with range of 2.5 - 10 ppm, 5 - 7 %.

  • PDF