• 제목/요약/키워드: gasification by-products

검색결과 20건 처리시간 0.025초

석유 코크스의 에너지 전환 : CO2 가스화 (Energy conversion of petroleum coke : CO2 gasification)

  • 국진우;곽인섭;이시훈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.255-257
    • /
    • 2014
  • The installation of light oil facilities or delayed cokers seems to be inevitable in the oil refinery industry due to the heavy crude oil reserves and the increased use of light fuels as petroleum products. Petroleum coke is a byproduct of oil refineries and it has higher fixed carbon content, higher calorific value, and lower ash content than coal. However, its sulfur content and heavy metal content are higher than coal. In spite of disadvantages, petroleum coke might be one of promising resources due to gasification processes. The gasification of petroleum coke can improve economic value of oil refinery industries by handling cheap, toxic wastes in an environment-friendly way. In this study, $CO_2$ gasification reaction kinetics of petroleum coke, various coals and mixing coal with petroleum coke have investigated and been compared by using TGA. The kinetics of $CO_2$ gasification has been performed with petroleum coke, 3 kinds of bituminous coal [BENGALLA, White Haven, TALDINSKY], and 3 kinds of sub-bituminous coal [KPU, LG, MSJ] at various temperature[$1100-1400^{\circ}C$].

  • PDF

폐타이어 건류 소각에서 발생되는 재와 배기 가스에서의 독성 오염 물질의 정량 (Characterization of Toxic Pollutants in Ash and Flue Gas from Gasification Incinerator of Waste Tires)

  • 구자공;서영화;김석완;유동준
    • 대한토목학회논문집
    • /
    • 제13권1호
    • /
    • pp.213-220
    • /
    • 1993
  • 본 논문에서는 해마다 수 십만 개씩 발생되는 폐타이어의 열적 처리 방법인 건류 소각 처리 방법에서 발생되는 이차 오염 물질을 정량하여 폐타이어의 안전한 최종 처리 방법까지 고찰하였다. 건류-소각처리 방법에서 발생되는 배기 가스에서 이차 독성 오염 물질을 화학 평형 모델을 응용하여 예측하였고 실질적인 잔류 물질인 건류재와 소각재에서 유기성 독성 물질과 중금속을 정량하였다. 건류재에서는 폐타이어의 불완전 연소에 따른 유기성 이차 오염 물질이 다량 포함되어 있는 반면에 소각재에서는 납과 카드뮴과 같은 중금속 화합물의 함량이 높았다. 건류재 및 소각재의 안전한 최종 매립을 위하여는 서로 다른 전처리 방법이 요구된다.

  • PDF

Microwave-enhanced gasification of sewage sludge waste

  • Chun, Young Nam;Song, Hee Gaen
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.591-599
    • /
    • 2019
  • To convert sewage sludge to energy, drying-gasification characteristics during microwave heating were studied. During the gasification of carbon dioxide, the main products were gas, followed by char, and tar in terms of the amount. The main components of the producer gas were carbon monoxide and hydrogen including a small amount of methane and light hydrocarbons. They showed a sufficient heating value as a fuel. The generated tar is gravimetric tar, which is total tar. As light tars, benzene (light aromatic tar) was a major light tar. Naphthalene, anthracene, and pyrene (light polycyclic aromatic hydrocarbon tars) were also generated, but in relatively small amounts. Ammonia and hydrogen cyanide (precursor for NOx) were generated from thermal decomposition of tar containing protein and nitrogen in sewage sludge. In the case of sludge char, its average pore diameter was small, but specific area, pore volume, and adsorption amounts were relatively large, resulting in superior adsorption characteristics.

석탄가스화 공정 모델링에 관한 연구 (A Study of Coal Gasification Process Modeling)

  • 이중원;김미영;지준화;김시문;박세익
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.425-434
    • /
    • 2010
  • Integrated gasification combined cycle (IGCC) is an efficient and environment-friendly power generation system which is capable of burning low-ranked coals and other renewable resources such as biofuels, petcokes and residues. In this study some process modeling on a conceptual entrained flow gasifier was conducted using the ASPEN Plus process simulator. This model is composed of three major steps; initial coal pyrolysis, combustion of volatile components, and gasification of char particles. One of the purposes of this study is to develop an effective and versatile simulation model applicable to numerous configurations of coal gasification systems. Our model does not depend on the hypothesis of chemical equilibrium as it can trace the exact reaction kinetics and incorporate the residence time calculation of solid particles in the reactors. Comparisons with previously reported models and experimental results also showed that the predictions by our model were pretty reasonable in estimating the products and the conditions of gasification processes. Verification of the accuracy of our model was mainly based upon how closely it predicts the syngas composition in the gasifier outlet. Lastly the effects of change oxygen are studied by sensitivity analysis using the developed model.

순산소 가스화 반응장에서 CO2 전환 메커니즘 연구 (Experimental Study on CO2 Reaction Mechanism in Oxy Gasification Reaction Field)

  • 노선아;윤진한;길상인;이정규;민태진
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권4호
    • /
    • pp.285-290
    • /
    • 2015
  • 저급 에너지인 폐기물로부터 고부가 합성가스를 생산하고 온실가스 저감 연구를 동시에 수행하기 위하여 $1000-1400^{\circ}C$의 고온에서 순산소 가스화 연구를 수행하였다. 폐기물 시료로는 RPF (Refused Plastic Fuel)를 이용하였으며 실험 장치로는 열중량 분석기와 0.5 ton/day의 pilot plant 가스화 시스템을 이용하였다. 열중량 분석기에서는 이산화탄소에 의한 RPF 촤(char)의 가스화 실험을 수행하여 온도에 따른 중량 변화를 고찰하고 Boudouard reaction에 의해 일산화탄소가 생성되는 것을 확인하였다. 또한, 0.5 ton/day pilot plant system에서 RPF의 순산소 가스화를 통하여 고농도의 수소를 함유한 합성가스를 생산하였다. 생산된 합성가스는 수송용 연료 생산과 화학제품 생산에 가능한 수소와 일산화 탄소의 비율을 나타내었다.

2단 분류층 가스화기에서 합성가스 생성을 위한 석탄 슬러리 가스화에 대한 수치 해석적 연구 (Numerical simulation of gasification of coal-water slurry for production of synthesis gas in a two stage entrained gasifier)

  • 서동균;이선기;송순호;황정호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.417-423
    • /
    • 2007
  • Oxy-gasification or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization, mixture fraction model and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The influence of turbulence on the gas properties was taken into account by the PDF (Probability Density Function) model. A numerical simulation with the coal gasification model is performed on the Conoco-Philips type gasifier for IGCC plant. Gas temperature distribution and product gas composition are also presented. Numerical computations were performed to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow field. The concentration of major products, CO and H2 were calculated with varying oxygen to coal ratio (0.2-1.5) and steam to coal ratio(0.3-0.7). To verify the validity of predictions, predicted values of CO and H2 concentrations at the exit of the gasifier were compared with previous work of the same geometry and operating points. Predictions showed that the CO and H2 concentration increased gradually to its maximum value with increasing oxygen-coal and hydrogen-coal ratio and decreased. When the oxygen-coal ratio was between 0.8 and 1.2, and the steam-coal ratio was between 0.4 and 0.5, high values of CO and H2 were obtained. This study also deals with the comparison of CFD (Computational Flow Dynamics) and STATNJAN results which consider the objective gasifier as chemical equilibrium to know the effect of flow on objective gasifier compared to equilibrium. This study makes objective gasifier divided into a few ranges to study the evolution of the gasification locally. By this method, we can find that there are characteristics in the each scope divided.

  • PDF

석탄가스화발전 용융슬래그의 치환율 변화에 따른 빈배합 모르타르의 특성 분석 (Properties of Lean Mixed Mortar with Various Replacement Ratio of Coal Gasification Slag)

  • 박경택;한민철;현승용
    • 한국건축시공학회지
    • /
    • 제19권5호
    • /
    • pp.391-399
    • /
    • 2019
  • 본 연구는 국내에 새롭게 도입하고자 시운전중인 석탄가스화복합발전(IGCC)에서 발생하는 석탄가스화 용융슬래그(CGS)를 국내의 부족한 골재자원으로 재활용 가능성을 검토하였다. 즉, 부족한 골재자원확보를 위해 IGCC에서 발생하는 CGS를 빈배합 모르타르인 콘크리트 2차제품용 잔골재로 활용하고자 국내 건설산업에서 가장 많이 사용되고 있는 석산의 부순 잔골재로 양호한 품질의 CSa 및 굵은 입자로 표준입도를 벗어난 CSb와 해사인 SS를 혼합한 혼합잔골재에 CGS를 0~100 % 범위에서 치환하는 것을 검토하였다. 연구결과, CSa 혹은 CSb+SS에 CGS를 25~50% 정도 치환할 경우 골재의 입도측면 및 시멘트 모르타르의 유동성 및 압축강도 측면에서 양호한 결과가 얻어져 활용가능함을 확인할 수 있었다.

Pilot 규모 산성가스 제거공정 운전 특성 (Operation Characteristics of Pilot-scale Acid Gas Removal Process)

  • 이승종;류상오;정석우;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.533-536
    • /
    • 2009
  • The gasification technology is a very flexible and versatile technology to produce a wide variety products such as electricity, steam, hydrogen, Fisher-Tropsch(FT) diesels, Dimethyl Ether(DME), methanol and SNG(Synthetic Natural Gas) with near-zero pollutant emissions. Gasification converts coal and other low-grade feedstocks such as biomass, wastes, residual oil, petroleum coke, etc. to a very clean and usable syngas. Syngas is produced from gasifier including CO, $H_2$, $CO_2$, $N_2$, particulates and smaller quantities of $CH_4$, $NH_3$, $H_2S$, COS and etc. After removing pollutants, syngas can be variously used in energy and environment fields. The pilot-scale coal gasification system has been operated since 1994 at Ajou University in Suwon, Korea. The pilot-scale gasification facility consists of the coal gasifier, the hot gas filtering system, and the acid gas removal (AGR) system. The acid gas such as $H_2S$ and COS is removed in the AGR system before generating electricity by gas engine and producing chemicals like Di-methyl Ether(DME) in the catalytic reactor. The designed operation temperature and pressure of the $H_2S$ removal system are below $50^{\circ}C$ and 8 kg/$cm^2$. The iron chelate solution is used as an absorbent. $H_2S$ is removed below 0.1 ppm in the H2S removal system.

  • PDF

한국 왕겨 바이오매스의 가스화를 통한 수소 생산 공정모사 예비 연구 (A Preliminary Study on Simulating the Hydrogen Production Process through Biomass Gasification Using Rice Husks from Korea)

  • 손지현;유미래;김명지;이상훈
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.699-706
    • /
    • 2022
  • Recently, hydrogen production is attracting attention. In this study, a process simulation was conducted on the gasification reaction to produce hydrogen using rice husks, which are produced as by-products of rice. For this purpose, Chuchung, Odae, and Dongjin rice, which are rice varieties produced in Korea, were compared with the literature. The Korean rice contained more hydrogen and less oxygen compared to the literature. As a result of the simulation, large amounts of H2 and CH4 and small amounts of CO2 and CO were produced accordingly. The conditions to maximize hydrogen production were a gasification reaction temperature of 700℃ and an Steam-to-Biomass (S/B) ratio of 0.4-0.6. However, because the S/B ratio is related to the gasification catalyst degradation, the model needs to be improved through additional experiments in the future. This study showed the possibility of hydrogen production using Korean rice husks, which had not been reported.

가스화 조건에서 슬래그 성분이 크롬계 내화재 미세구조 변화에 미치는 영향 (Effects of Slag Composition on the Microphase Change of a Chromia Refractory under Gasification Conditions)

  • 오명숙;김한봄;박우성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.441-444
    • /
    • 2007
  • The inside wall of a coal gasifier is lined with refractory, and the corrosion of the refractory by coal sag is an important parameter affecting the refractory lifetime and the replacement period. This paper examines the changes in microstructure of a chromia refractory due to chemical reactions with penetrating slag as a function of slag composition. The effects of CaO and $Fe_2O_3$ concentrations were studied using Datong and KIDECO slag. Static corrosion experiments were carried out, the percent slag penetration and changes in the microstructure were determined by SEM/EDX analyses. FactSage equilibrium calculations were carried out to determine the equilibrium products and the predictions were compared with experimental observations.

  • PDF