• 제목/요약/키워드: gasification

검색결과 659건 처리시간 0.028초

Reforming Tar from Biomass Gasification using Limonite and Dolomite as Catalysts

  • Kim, Hee-Joon;Kunii, Hiroo;Li, Liuyun;Shimizu, Tadaaki;Kim, Lae-Hyun
    • 에너지공학
    • /
    • 제20권4호
    • /
    • pp.298-302
    • /
    • 2011
  • In this study, Catalytic reforming with vapor and biomass gasification was simultaneously performed in a same fixed bed reactor at $600-800^{\circ}C$. Light gases were produced from reformation of the tar (fuel gases) in biomass gasification by using limonite and dolomite, as catalysts. Hydrogen and carbon dioxide are main components in light gases. Hydrogen yields increased with temperature increasing in the range of $650-800^{\circ}C$, because the water shift reaction was promoted by catalyst. The yield of hydrogen gas was increased about 160% under catalyst with the mixture of limonite and dolomite comparing to limonite only.

CGS를 잔골재로 혼합 사용하는 모르타르의 공학적 특성 (Properties of Cement Mortar Using CGS as Mixed Fine Aggregate)

  • 한준희;이영준;현승용;박경택;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.138-139
    • /
    • 2018
  • This study is a basic review of the basic characteristics of mortar as a result of the use of concrete as a fine aggregate for CGS(coal gasification slag) generated from the IGCC(integrated gasification combined cycle). The analysis shows that CGS and crushed sand + seal sand mix is the best combination of CGS combined with about 75 % of CGS based on the effects of promoting liquidity and strength. This is expected to be a positive factor in securing the strength and flexibility of concrete given the optimal mix of CGS, and may also contribute to the improvement of quality.

  • PDF

Microwave-enhanced gasification of sewage sludge waste

  • Chun, Young Nam;Song, Hee Gaen
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.591-599
    • /
    • 2019
  • To convert sewage sludge to energy, drying-gasification characteristics during microwave heating were studied. During the gasification of carbon dioxide, the main products were gas, followed by char, and tar in terms of the amount. The main components of the producer gas were carbon monoxide and hydrogen including a small amount of methane and light hydrocarbons. They showed a sufficient heating value as a fuel. The generated tar is gravimetric tar, which is total tar. As light tars, benzene (light aromatic tar) was a major light tar. Naphthalene, anthracene, and pyrene (light polycyclic aromatic hydrocarbon tars) were also generated, but in relatively small amounts. Ammonia and hydrogen cyanide (precursor for NOx) were generated from thermal decomposition of tar containing protein and nitrogen in sewage sludge. In the case of sludge char, its average pore diameter was small, but specific area, pore volume, and adsorption amounts were relatively large, resulting in superior adsorption characteristics.

석고 혼입 석탄가스화 슬래그 미분말 치환 시멘트 모르타르의 초기강도 특성 (Initial Strength Characteristics of Cementitious Gypsum-Containing Coal Gasification Slag Powder Replacement Cement Mortar)

  • 조현서;김민혁;이건철;조도영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.207-208
    • /
    • 2019
  • In this study, compressive strength was measured to evaluate the initial strength of cement mortar substituted with coal gasification slag containing desulfurized gypsum, and the reactivity of desulfurized gypsum was confirmed. In order to improve the reactivity, 2% gypsum mixed type and gypsum unfedged type specimens were fabricated and the influence of desulfurization gypsum on compressive strength of coal gasification slag and blast furnace slag fine powder replacement cement mortar was compared and confirmed. As a result of the experiment, it was confirmed that the initial compressive strength of the specimen containing the desulfurized gypsum was improved at the initial stage.

  • PDF

석탄가스화 화학반응의 기본 특성 분석 연구 (Characteristics of Chemical Reactions in Coal Gasification Processes)

  • 백승철;손정락;송성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3125-3130
    • /
    • 2008
  • Coal is one of the most abundant and cheapest energy sources in the earth, but its typical combustion product, $CO_2$, is related with serious recent environmental issues such as global warming. The Integrated Coal Gasification Combined Cycle (IGCC) with $CO_2$ sequestration is one of the most promising options to produce electricity using a relatively cheap fuel (coal) with minimum impact on environment. In IGCC power generation systems, some chemical reactions are required to gasify coal to produce syngases such as $H_2$ and CO, which would be burnt in the combustor to produce heat for power generation, with a penalty of additional energy consumption. In this paper, several chemical reactions for the gasification of coal are considered and their characteristics are investigated.

  • PDF

역청탄과 아역청탄의 석탄가스환 및 IGCC 성능검토

  • 안달홍;나중희;송규소;김남호;김종진;지평삼
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1994년도 추계학술발표회 초록집
    • /
    • pp.68-77
    • /
    • 1994
  • The Integrated Gasification Combined Cycle(IGCC) power plant is one of Clean Coal Technology to meet the demand for clean and efficient electric power for the 21st century. This study is to investigate the impacts of changes in coal quality to the performances of gasification processes and IGCC plants. The selection of the most economic coal is an important attribute for the IGCC power generation technology. The performances of gasification processes was predicted, and compared with the results of Shell coal gasification demonstrantions. The IGCC performances with bituminous and sub-bituminous coal were predicted as well. It is obtained that the bituminous coal is superior to the sub-bituminous coal for IGCC power generation.

  • PDF

석탄 가스화 용융 슬래그를 혼합 잔골재로 사용한 FA 치환 콘크리트의 수화열 저감 (Reduction of Hydration heat of FA concrete using Coal Gasification Slag for Mixed Fine Aggregate)

  • 한준희;이영준;최일경;김종;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.79-80
    • /
    • 2019
  • This study was intended to examine the possibility of reducing hydration heat by FA substitution and combination of slag (CGS) from coal gasification power generation (IGCC) with mixed aggregate for concrete. The analysis results showed good results if liquidity increases as the ratio of CGS increases, air volume decreases, and compressive strength is mixed up to 25% in the residual aggregate. The results showed that the heat of hydration was reduced compared to plain due to the boron content of CGS as the CGS substitution rate increased, but it was larger due to the combination with FA substitution. It was found that the heat of hydration was reduced.

  • PDF

수소생산을 위한 바이오매스 가스화 반응의 실험적 고찰 (Experimental Assessment of Biomass Gasification for Hydrogen Production)

  • 홍성구;엄병환
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.1-8
    • /
    • 2022
  • Hydrogen can be produced by gasification of biomass and other combustible fuels. Depending on oxydant agents, syngas or producer gas compositions become quite different. Since biomass has limited amount of hydrogen including moisture in it, the hydrogen concentration in the syngas is about 15% when air is supplied for oxidant agent. Experiments were conducted to investigate the channges in hydrogen concentrations in syngas with different oxidant agent conditions, fuel conditions, and external heat supply. Allothermal reaction resulted in higher concentrations of hydrogen with the supply of steam over air, reaching over 60%. Hydrogen is produced by water-gas and water-gas shift reactions. These reactions are endothermic and require enough heat. Autothermal reaction occurred in the downdraft gasifier used in the experiment did not provide enough heat in the reactions for hydrogen production. Steam seems a more desirable oxidant agent in producing the syngas with higher concentrations of hydrogen from biomass gasifications since nitrogen is included in syngas when air is used.

고품질 골재 전환을 위한 석탄 가스화 용융슬래그의 전처리 공정 개발 (Development of a Pretreatment Process for Coal Gasification Slag to Convert High-quality Aggregates.)

  • 후윈야오;한수환;임군수;한준희;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.122-123
    • /
    • 2021
  • This study examines the performance of pretreatment process system as the initial construction stage of the pretreatment process system to use CGS, a by-product generated in IGCC, as a concrete fine aggregate of construction materials. The process undergoes a grinding process capable of grinding to a predetermined particle size during primary grinding and a sorting plant through sieve grading of 2.5 mm or less for particle size correction. Afterwards, it is hoped that the use of coal gasification slag of Korean IGCC as a fine aggregate for concrete will be distributed and expanded by producing quality-improved CGS fine aggregate using water as a medium for removing impurities and particulates.

  • PDF

석탄 가스화 용융 슬래그의 비열 및 미소수화열 특성 (The Characteristics of Isothermal Conduction Calorimetry and Specific Heat in Coal Gasification Slag)

  • 한준희;후윈야오;임군수;김수호;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.182-183
    • /
    • 2021
  • In this study, This is the result of thermal characteristics analysis to suggest an efficient method of using coal gasification slag(CGS) of byproduct from integrated gasification combined cycle(IGCC). In Specific Heat characteristics, CGS and CS showed similar values. Isothermal Conduction Calorimetry showed that the hydration reaction of cement was retarded when CGS was used. Therefore, it is expected that CGS will be used as an efficient alternative to reducing the hydration heat of mass concrete as a functional aggregate combination.

  • PDF