Browse > Article
http://dx.doi.org/10.5389/KSAE.2022.64.5.001

Experimental Assessment of Biomass Gasification for Hydrogen Production  

Hong, Seong Gu (School of Social Safety System Engineering, Hankyong National University)
Um, Byung Hwan (School of Food Biotechnology and Chemical Engineering, Hankyong National University)
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.64, no.5, 2022 , pp. 1-8 More about this Journal
Abstract
Hydrogen can be produced by gasification of biomass and other combustible fuels. Depending on oxydant agents, syngas or producer gas compositions become quite different. Since biomass has limited amount of hydrogen including moisture in it, the hydrogen concentration in the syngas is about 15% when air is supplied for oxidant agent. Experiments were conducted to investigate the channges in hydrogen concentrations in syngas with different oxidant agent conditions, fuel conditions, and external heat supply. Allothermal reaction resulted in higher concentrations of hydrogen with the supply of steam over air, reaching over 60%. Hydrogen is produced by water-gas and water-gas shift reactions. These reactions are endothermic and require enough heat. Autothermal reaction occurred in the downdraft gasifier used in the experiment did not provide enough heat in the reactions for hydrogen production. Steam seems a more desirable oxidant agent in producing the syngas with higher concentrations of hydrogen from biomass gasifications since nitrogen is included in syngas when air is used.
Keywords
Biomass; steam gasification; allothermal gasification; downdraft gasifier;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Chimpae, S., S. Wongsakulphasatch, S. Vivanpatarakij, T. Glinrun, F. Wiwatwongwana, W. Maneeprakorn, and S. Assabumrungrat. 2019. Syngas production from combined steam gasification of biochar and a sorption-enhanced water-gas shift reaction with the utilization of CO2. Processes 7(6): 349.   DOI
2 Haykiri-Acma, H., S. Yaman, and S. Kucukbayrak. 2006. Gasification of biomass chars in steam-Nitrogen mixture. Energy Conversion and Management 47(7): 1004-1013. doi:10.1016/j.enconman.2005.06.003.   DOI
3 Hognert, J., and L. Nilsson. 2016. The small-scale production of hydrogen, with the co-production of electricity and district heat, by means of the gasification of municipal solid waste. Applied Thermal Engineering 106: 174-179. doi:10.1016/j.applthermaleng.2016.05.185.   DOI
4 Barco-Burgos, J., J. Carles-Bruno, U. Eicker, A. L. Saldana-Robles, and V. Alcantar-Camarena. 2021. Hydrogen-rich syngas production from palm kernel shells (PKS) biomass on a downdraft allothermal gasifier using steam as a gasifying agent. Energy Conversion and Management 245: 114592. doi:10.1016/j.enconman.2021.114592.   DOI
5 Bridgwater, A. V., 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38: 68-94. doi:10.1016/j.biombioe.2011.01.048.   DOI
6 Demirbas, A., W. Ahmad, R. Alamoudi, and M. Sheikh. 2016. Sustainable charcoal production from biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38(13): 1882-1889. doi:10.1080/15567036.2014.1002955.   DOI
7 Hong, D. S. 2021. Is hydrogen economy environment friendly? Production methods matther. Hankyoreh (in Korean).
8 Kim, S. S., H. M. Lee, M. K. Lee, K. H. Moon, and C. Y. Lim. 2001. Comparison of hydrogen production costs. 2001 Fall Conference of Korean Nuclear Society (in Korean).
9 Hong, S. G., and J. H. Shim. 2008. Development and Assessment of a Downdraft Gasifier for Biomass Gasification. Journal of the Korean Society of Agricultural Engineers 2008(50): 89-97. (in Korean).   DOI
10 Hong, S. G., and L. Wang. 2011. Experimental evaluation of synthesis gas production from air dried woodchip. Journal of Korean Society of Agricultural Engineers 53(6): 17-22. (in Korean).   DOI
11 Kojima, Y., Y. Kato, S. L. Yoon, and M. K. Lee. 2014. Kenaf as a bioresource for production of hydrogen-rich gas. Agrotechnology 3(1): 125. doi:10.4172/2168-9881.1000125.   DOI
12 Lee, J. M., S. K. Kim, J. H. Kim, M. S. Kim, and T. W. Kim. 2019. Cyogenic technologies for the storage and supply of hydrogen fuel. Snakzine 56(1): 15-24.
13 Park, S. W. 2022. England, Supporting R&D on hydrogen production and carbon capture. Monthly Hydrogen Economy (in Korean).
14 Wang, L., K. Kang, T. H. Lee, S. H. Choi, and S. G. Hong. 2015. Characteristics of the gasification from mixed fuels of charcoal and undried woodchip. Journal of the Korean Society of Agricultural Engineers 57(5): 81-88. doi:10.5389/KSAE.2015.57.5.081.   DOI
15 Bartocci, P., M. Zampilli, G. Bidini, and F. Fantozzi. 2018. Hydrogen-rich gas production through steam gasification of charcoal pellet. Applied Thermal Engineering 132: 817-823. doi:10.1016/j.applthermaleng.2018.01.016.   DOI
16 Basu, P. 2013. Chapter 5 - Pyrolysis. Biomass Gasification, Pyrolysis and Torrefaction (Second Edition). 147-176. doi:10.1016/B978-0-12-396488-5.00005-8.   DOI
17 Chaudhari, S. T., S. K. Bej, N. N. Bakhshi, and A. K. Dalai. 2001. Steam gasification of biomass-derived char for the production of carbon monoxide-rich synthesis gas. Energy & Fuels 15(3): 736-742.   DOI
18 Sattar, A., G. A. Leeke, A. Hornung, and J. Wood. 2014. Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas. Biomass and Bioenergy 69: 276-286. doi:10.1016/j.biombioe.2014.07.025.   DOI
19 Pang, Y., D. Yu, Y. Chen, G. Jin, and S. Shen. 2020. Hydrogen production from steam gasification of corn straw catalyzed by blast furnace gas ash. International Journal of Hydrogen Energy 45(35): 17191-17199. doi:10.1016/j.ijhydene.2019.02.235.   DOI
20 Ruiz-Aquino, F., S. Ruiz-Angel, J. R. Sotomayor-Castellanos, and A. Carrillo-Parra. 2019. Energy characteristics of wood and charcoal of selected tree species in Mexico. Wood Research 64(1): 71-82.