• Title/Summary/Keyword: gases

Search Result 4,014, Processing Time 0.028 seconds

Development of a Noble Gas Isotope Dilution Mass Spectrometric System Combined with a Cryogenic Cold Trap (초저온 냉각 트랩을 결합한 비활성기체 동위원소 희석 질량분석 시스템의 제작)

  • HONG, BONGJAE;SHIN, DONGYOUB;PARK, KEYHONG;HAHM, DOSHIK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.144-157
    • /
    • 2022
  • Noble gases, which are chemically inert and behave conservatively in marine environments, have been used as tracers of physical processes such as air-sea gas exchange, mixing of water masses, and distribution of glacial meltwater in the ocean. For precise measurements of Ne, Ar, and Kr, we developed a mass spectrometric system consisting of a quadrupole mass spectrometer (QMS), a high vacuum preparation line, an activated charcoal cryogenic trap (ACC), and a set of isotope standard gases. The high vacuum line consists of three sections: (1) a sample extraction section that extracts the dissolved gases in the sample and mixes them with the standard gases, (2) a gas preparation section that removes reactive gases using getters and separates the noble gases according to their evaporation points with the ACC, and (3) a gas analysis section that measures concentrations of each noble gas. The ACC attached to the gas preparation section markedly lowered the partial pressures of Ar and CO2 in the QMS, which resulted in a reduced uncertainty of Ne isotope analysis. The isotope standard gases were prepared by mixing 22Ne, 36Ar, and 86Kr. The amounts of each element in the mixed standard gases were determined by the reverse isotope dilution method with repeated measurements of the atmosphere. The analytical system achieved precisions for Ne, Ar, and Kr concentrations of 0.7%, 0.7%, and 0.4%, respectively. The accuracies confirmed by the analyses of air-equilibrated water were 0.5%, 1.0%, and 1.7% for Ne, Ar, and Kr, respectively.

Derivation of Design Parameter for Heat Regenerator with Spherical Particles (구형축열체를 이용한 축열기의 설계인자도출)

  • Cho, Han-Chang;Cho, Kil-Won;Lee, Yong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1412-1419
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerator with spherical particles, was numerically analyzed to evaluate the heat transfer and pressure losses and to derive the design parameter for heat regenerator. It is confirmed that the computational results, such as air preheat temperature, exhausted gases outlet temperature, and pressure losses, agreed well with the experimental data. The thermal flow in heat regenerator varies with porosity, configuration of regenerator and diameter of regenerative particle. As the gas velocity increases with decreasing the cross-sectional area of the regenerator, the heat transfer between gas and particle enhances and pressure losses decrease. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled lower with the increase of pressure losses. Assuming a given exhaust gases temperature at the regenerator outlet, the regenerator need to be linearly lengthened with inlet Reynolds number of exhaust gases, which is defined as a regenerator design parameter.

Analysis on the Combustion Characteristics of Low-Btu Synthetic Gases in Gas Engine (저발열량 합성가스의 가스엔진 내 연소 특성에 대한 해석)

  • Lee, Chan;Cho, Sang Mok
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.78-86
    • /
    • 2006
  • Computational analyses are conducted on the combustion characteristics of the coal- and the biomass-derived synthetic gases with low-Btu heating value in gas engine. Using thermochemical analyses on the synthetic gases, combustion pressure, temperature, exhaust gas composition, NO emission and engine power are predicted and the predicted results are compared with small-scale pilot engine test results. In order to investigate the unsteady combustion phenomena in gas engine combustion chamber, CFD analyses are carried out on the coal and the biomass synthetic gases and their computed results are compared to provide the guidelines for the design modification and the tuning of the gas engine burning the synthetic gases as alternative fuels.

  • PDF

The Analysis of Insulation Properties with Electron Collision Processes on SF6 Mixture Gases (전자충돌과정을 통한 SF6 혼합기체의 절연특성 분석)

  • So, Soon-Youl
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.197-201
    • /
    • 2010
  • $SF_6$ gas would be used in power transformer, GIS (Gas insulated switchgear) and so on because of its electrically superior insulation and chemically stable structure. Recently, the reduction of $SF_6$ is required to avoid global warming and the researches on the dilution of $SF_6$ with other gases have been carried out. $SF_6$ mixture gases with $N_2$ and $C_xF_y$ have drawn attention to the synergy effect. However, in order to understand the mechanism of the synergy effect, it is important to analyze and evaluate properties of mixture gases quantitatively. In this paper, we investigated the mechanism of synergy effect from electron collision processes and electron energy distribution by solving Boltzmann equation with propagator method. Three kinds of gases for dilution of $SF_6$ ($SF_6/N_2$, $SF_6/CF$4 and $SF_6/C_4F_8$) are considered in this simulation. On the properties of $SF_6/N_2$ mixture gas, the variation of reduced electric field was shown highly within 0%~40% mixtures of $SF_6$. And the more low-level electron energy has been distributed, the higher insulation capability has appeared.

Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive (악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발)

  • Chung, Wan-Young;Shim, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

Separation of dissolved gases from water using synthesized gases based on exhalation characteristics

  • Heo, Pil Woo;Park, In Sub
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1347-1353
    • /
    • 2014
  • It's possible for a human to breathe under water, if dissolved oxygen is effectively used. Fish can stay under water using the gill which extracts dissolved oxygen from water. Water includes small amounts of oxygen, so a human needs larger amounts of water to acquire oxygen enough for underwater breathing. The exhalation gas from a human is another method to get higher amounts of oxygen under water. It mainly composes of oxygen, nitrogen and carbon dioxide. So, if only carbon dioxide is decreased, the exhalation gas has good characteristics for breathing of a human under water. In this paper, composition of the exhalation gas from a human was analyzed using GC. Based on these results, the synthesized gas was prepared and mixed into water which was used for experimental devices to analyze separation characteristics of dissolved gases from water. Experimental devices included a water pump, a hollow fiber membrane module and a vacuum pump. The effects of pressure and water flow on separation characteristics of synthesized gas were investigated. The compositions of gases separated from water using synthesized gas were investigated using GC. These results expect to be applied to the development of underwater breathing technology for a human.

The Combustion Gases Toxicity Evaluation of Plastics Material by Colorimetric Gas Detector Tubes (가스검지관법에 의한 플라스틱재료의 연소가스 독성평가)

  • 박영근;김동일;현성호
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.77-84
    • /
    • 2002
  • In this paper, we had analyzed comsbustion gases using a GASTEC colorimetric gas detector tube according to the method of NES 713 in order to combustion gases toxicity evaluation for beads polystyrene foam, extruded polystyrene foam, rigid polyurethane foam, flexible polyurethane foam, flexible polyvinyl chloride pipe, vinyl floor cover, polyethyelene foam(flame retardant untreated) and polyethyelene foam (flame retardant treated) of plastics material. As results of gas analyses by using this method, comsbustion gases producted from small specimens of plastics material had reached fatal to man at 30 minutes exposure time that had possesed toxicity index of more than 1. Toxicity indexes of each specimen were estimated range of 4.3∼179.2, flexible polyvinyl chloride showed the hightest toxicity index at 179.2, and beads polystyrene foams showed the lowest toxicity index at 4.3.

Effects on the Gas Dispersion by Changed Gas Composition (가스의 성분변화가 확산에 미치는 영향)

  • Min, Dongchul;Gye, Hyeri;Kim, Sungtae;Kim, JongMin;Kwon, Jeong-Rock;Kim, Byung-Duk
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.117-123
    • /
    • 2015
  • Recetly, Many industry have used unknown composition gases and no information gases. These gases were used increasing. As use increases, The more important software that can predict dispersion region and speed. It is very difficult to predict the dispersion of new gases. Because, it is predict from existing database. In this study, we propose to esimate dispersion region and speed of some gases, using a FLACS software and equivalent gas.

Development of Management Software for Transformers Based on Artificial Intelligent Analysis Technology of Dissolved Gases in Oil (지능형 유중가스 분석기술 기반 유입식 변압기 전산관리 프로그램 개발)

  • Sun Jong-Ho;Han Sang-Bo;Kang Dong-Sik;Kim Kwang-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.578-584
    • /
    • 2005
  • This paper describes development of management software for transformers based on artificial intelligent analysis technology of dissolved gases in oil. Fault interpretation using the artificial intelligent analysis is performed by the artificial neural network and a rule based on the analysis of dissolved gases. The used gases are acetylene($C_{2}H_{2}$), hydrogen($H_2$), ethylene($C_{2}H_{4}$), methane($CH_4$), ethane($C_{2}H_{6}$), carbon monoxide(CO) and carbon dioxide($CO_2$). This software is mainly composed of gases input, fault's causes, expected fault's phenomena in detail, the decision on maintenance as well as report and gas trend windows. It is indicated that this is very powerful software for the efficient management of oil-immersed transformers using data analysis of gas components.

Effects of Ammonia on the Sulfur Dioxide Injury in Plants (식물의 아황산 가스 피해에 대한 암모니아 가스의 영향)

  • 성민웅
    • Journal of Plant Biology
    • /
    • v.16 no.1_2
    • /
    • pp.17-22
    • /
    • 1973
  • The experiments were conducted to examine the injuries of $SO_2$, $NH_3$, and $SO_2$ and NH3 mixed gas to the germination and the growth of plants. Six kinds of plants were used as the material. These plants seeds were treated with the gases for five days. Rate of the germination and the growth in height of varying plants were different according to the components of the gases. The critical concentration of the gases for both the germination and the growth were in 5ppm of $SO_2$, 50ppm of $NH_3$, and 50ppm $SO_2$ and 50ppm $NH_3$ mixed gases. When a low concentration of $SO_2$ was treated together with NH3, especially it was reduced to 60 percent of the damage in the germination and the growth. In the treatemnt with $SO_2$, the germination of the seeds which soaked in water for 24 hours reduced the injuries more 40 percent than those which for one hour. It was observed that the seeds with thick coasts or with originally intact coats were suffered but little damaged by the gases, and the external symptoms of an injury were shown, at first, in water pore, and then, in guard cell on the leaves.

  • PDF