• Title/Summary/Keyword: gas-vapor phase

Search Result 325, Processing Time 0.026 seconds

Properties of the Chemically Vapor Deposited Alumina Thin Film and Powder on Heat Treatment (CVD법으로 합성된 알루미나 박막 및 분말의 열처리에 따른 특성)

  • 최두진;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.235-241
    • /
    • 1989
  • A study on the APCVD(atmospheric pressure chemical vapor deposition) Al2O3 was done by using the aluminum-tri-isopropoxide/N2 reaction system at 40$0^{\circ}C$. When the flow rate of the carrier gas(N2) was over 2SLPM, heterogeneous reaction was observed. However, when the flow rate of the carrier gas was below 2SLPM, a porously deposited film or powder formation was observed. The film formed by a heterogeneous reaction was optically dense. The dense film is thought to be a kind of a hydrated alumina. After a thermal treatment of the film in the range of temperature from $600^{\circ}C$ to 1, 20$0^{\circ}C$, properties of the film seems to be changed due to dehydration and densification process. In the case of the powder on heat treatment(600~1, 20$0^{\circ}C$), both a phase transformation and the change of OH peak was observed.

  • PDF

Ab initio Study on the Complex Forming Reaction of OH and H2O in the Gas Phase

  • Park, Jong-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.158-164
    • /
    • 2015
  • The estimation of the concentration of hydroxyl radical (OH) in the atmosphere is essential to build atmospheric models and to understand the mechanisms of the reactions involved in OH. Although water vapor is one of the most abundant species in the troposphere, only a few studies have been performed for the reaction of OH and water vapor. Here I demonstrate an ab initio study on the complex forming reation of OH with $H_2O$ in the gas phase performed based on density functional theory to calculate the reaction rate and the energy states of the reactant and the OH-$H_2O$ complex. The structure of the complex, which belongs to the Cs point group, was optimized at global minima. The transition state was not found at the B3LYP and MP2 levels of theory. Rate constants of the forward and the reverse reactions were calculated as $1.1{\times}10^{-16}cm^3\;molecule^{-1}\;s^{-1}$ and $5.3{\times}10^9\;s^{-1}$, respectively. The extremely slow rates of complex forming reaction and the resulting hydrogen atom exchange reaction of OH and $H_2O$, which are consistent with experimentally determined values, imply a negligible possibility of a change in OH reactivity through the title reaction.

Fabrication and Characterization of Ytterbium Silicates for Environmental Barrier Coating Applications (환경차폐코팅용 이터븀 실리케이트의 제조와 물성평가)

  • Choi, Jae-Hyeong;Kim, Seongwon
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.331-339
    • /
    • 2021
  • Environmental barrier coatings(EBCs) are applied to the SiC/SiC ceramic matrix composites(CMCs) in order to protect CMCs from being corroded with water vapor by combustion gas in gas turbine engines. Ytterbium silicates, such as ytterbium monosilicate and ytterbium disilicate, are ones of the candidate materials for EBCs due to their excellent resistance to water vapor corrosion as well as thermal-expansion match with SiC. In this study, ytterbium silicates are fabricated with 2-step solid-state synthesis targeting ytterbium disilicate. After synthesizing ytterbium monosilicate, the mixtures of ytterbium monosilicate and SiO2 are heat-treated and densified by using pressureless sintering or hot pressing with a variety of heating conditions. The phase formation, thermal expansion, and oxidation behavior are examined with fabricated specimens. The final densified bodies are found to be composites between ytterbium monosilicate and ytterbium disilicate with different ratios, which results in 4.43 to 6.72×10-6/K range of coefficients of thermal expansion. The probability of these ytterbium silicates for EBC applications is also discussed.

Solid-Phase crystallization of amorphous silicon films deposited by plasma-enhanced chemical vapor deposition

  • Lee, Jung-Keun
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.1
    • /
    • pp.49-54
    • /
    • 1998
  • The effect of deposition paratmeters on the solid-phase crystallization of amorphous silicon films deposited by plasma-enhanced chemical vapor deposition has been investigated by x-ray diffraction. The amorphous silicon films were prepared on Si(100) wafers using SiH4 gas with and without H2 dilution at the substrate temperatures between 12$^{\circ}C$ and 38$0^{\circ}C$. The R. F. powers and the deposition pressures were also varied. After crystallizing at $600^{\circ}C$ for 24h, the films exhibited (111), (220), and (311) x-ray diffraction peaks. The (111) peak intensity increased as the substrate temperature decreased, and the H dilution suppressed the crystallization. Increasing R.F. powers within the limits of etching level and increasing deposition pressures also have enhanced the peak intensity. The peak intensity was closely related to the deposition rate, which may be an indirect indicator of structural disorder in amorphous silicon films. Our results are consistent with the fact that an increase of the structural disorder I amorphous silicon films enhances the grain size in the crystallized films.

A Study on Formation Process of $TiO_2$ Nanopowder by Numerical Analysis in Chemical Vapor Condensation Reactor (화학기상응축 반응기 내부의 유동해석을 통한 $TiO_2$ 나노분말의 형성과정에 관한 연구)

  • Yu, Ji-Hun;Choe, Cheol-Jin;Kim, Yong-Jin;Kim, Byeong-Gi
    • 연구논문집
    • /
    • s.33
    • /
    • pp.123-135
    • /
    • 2003
  • Using the residence time calculated by computer simulation for temperature and gas velocity distribution in CVC reactor, the kinetics on the formation of $TiO_2$ nano powder was analyzed for coagulation process, After abrupt increase of particle size at initial growth stage (< 0.2 $\mus$ ), the particle grew in proportion of cubic root to time. The numerically calculated particle sizes well agreed with the experimental results. However, the coarse rutile $TiO_2$ powders having the particle size of over 40 nm were formed on the surface of quratz rod in the reactor. it is thought that the fine anatase particles condensed on quratz rod were sintered in a heated CVC reactor to grow and transform to coarse rutile phase, and the critical size for phase transformation anstase-to-rutile was around 25 nm tn this study.

  • PDF

Toxicity Assessment of Gas Phase in Cigarette Smoke Using Cell-free Assay

  • Park, Chul-Hoon;Sahn, Hyung-Ok;Shin, Han-Jae;Lee, Hyeong-Seok;Min, Yaung-Keun;Hyun, Hak-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.110-117
    • /
    • 2007
  • In vitro toxicity tests such as cytotoxicity, mutagenicity and genotoxicity assay are useful for evaluating the relative toxicity of smoke or smoke condensates obtained from different cigarette configurations. A major disadvantage of these tests is relatively time-consuming, complicated and expensive. Recently, a cell-free glutathione consumption assay (GCA) as a rapid and simple screening method for the toxicity assessment of smoke has been reported by Cahours et al. (CORESTA, 2006). This study was carried out to assess the GCA application capable of predicting the toxicity of gas/vapor phase (GVP) of cigarette smoke and to identify individual compounds responsible for the glutathione (GSH) consumption in smoke. Each GVPs from 2R4F, standard cigarette, carbon filter cigarette (ExC) and new carbon filter cigarette (ExN), test cigarettes were collected by automatic smoking machine and evaluated the relative toxicity by GCA and neutral red uptake (NRU) assay. Toxic compounds existed in smoke were also chosen, relative toxicities of these compounds were screened by using two methods and compared individually. The overall order of toxicity by GCA was 2R4F > ExC > ExN, which was consistent with the result of Neutral Red Uptake assay. The levels of carbonyl compounds of ExN were lower than those of 2R4F and ExC, indicating that GSH consumption was associated with carbonyl compound yields. A major toxicant under current study is acrolein, which contributed to more than half of the GSH consumption. Collectively, the toxicity of GVP determined by GCA method may be mainly attributed to acrolein.

Evaluation of the in vitro biological activity of selected 35 chemicals (35종의 특정 화학성분들의 in vitro 활성 평가)

  • Shin, Han-Jae;Sohn, Hyung-Ok;Park, Chul-Hoon;Lee, Hyeong-Seok;Min, Young-Keun;Hyun, Hak-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.1
    • /
    • pp.30-40
    • /
    • 2007
  • The objective of this study was to investigate the contribution of various smoke constituents to the toxicological activity of total particulate matter(TPM) or the gas/vapor phase(GVP). These components included phenol compounds, aromatic amines, polycyclic aromatic hydrocarbons, heterocyclic amines, and carbonyl compounds. The mutagenic and cytotoxic potencies were assessed using the Salmonella mutagenicity assay with S. typimurium TA98 strain and the neutral red uptake cytotoxicity assay(NRU) with BALB/c 3T3 fibroblast cells, respectively. The Salmonella mutagenicity test showed that heterocyclic amines exhibited significantly higher levels of toxicity compared to other smoke constituents. Among them, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline(MeIQ) was shown the most mutagenic compound with a specific mutagenicity of $7.9{\times}10^5\;revertants/{\mu}g$. An analysis of the possible contribution revealed that MeIQ account for only 0.85% of the 2R4F-TPM mutagenicity in TA98. NRU data demonstrated that high cytotoxic activity was obtained for hydroquinone, formaldehyde, and acrolein. Based on the results of the present study, the contribution of acrolein to the cytotoxicity of the GVP fraction was calculated as 61%. Thus, a large proportion of the cytotoxic activity of this complex mixture, cigarette smoke gas phase, can be attributed to the acrolein.

Thermodynamic Analysis of the Extraction Process and the Cold Energy Utilization of LNG (LNG추출과정과 냉열이용의 열역학적 해석)

  • Lee, G.S.;Chang, Y.S.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.120-131
    • /
    • 1995
  • Thermodynamic analysis of extraction process from the constant pressure LNG(Liquefied Natural Gas) vessel was performed in this study. LNG was assumed as a binary mixture of 90% methane and 10% ethane by mole fraction. The thermodynamic properties such as temperature, composition, specific volume and the amount of cold energy were predicted during extraction process. Pressure as a parameter ranges from 101.3kPa to 2000kPa. The result shows the peculiar phenomena for the LNG as a mixture. Both vapor and liquid extraction processes were investigated by a computer model. The property changes are negligible in the liquid extraction process. For the vapor extraction process, the temperature in the vessel increases rapidly and the extracted composition of methane decreases rapidly near the end of extracting process. Specific volume of vapor has the maximum and that of liquid has the minimum during the process. When pressure is increased, specific volume of vapor decreases and that of liquid increases. It was found that specific volume of vapor phase had a major effect on the heat absorption at constant pressure during vapor extraction process. If the pressure of the vessel increases, the total cold energy which can be utilized from LNG decreased.

  • PDF

Condensation and coagulation of metallic species with fly ash particles in a waste incinerator (폐기물 소각시 생성되는 유해 중금속물질과 연소실내 비산재와의 응축, 응집 현상에 대한 연구)

  • Yu, Ju-Hyeon;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.264-274
    • /
    • 1997
  • A numerical analysis on condensation and coagulation of the metallic species with fly ash particles pre-existing in an incinerator was performed. Waste was simplified as a mixture of methane, chlorine, and small amounts of Pb and Sn. Vapor-phase amounts of Pb- and Sn -compounds were first calculated assuming a thermodynamic equilibrium state. Then theories on vapor-to-particle conversion, vapor condensation onto the fly ash particles, and particle-particle interaction were examined and incorporated into equations of aerosol dynamics and vapor continuity. It was assumed that the particles followed a log-normal size distribution and thus a moment model was developed in order to predict the particle concentration and the particle size distribution simultaneously. Distributions of metallic vapor concentration (or vapor pressure) were also obtained. Temperature drop rate of combustion gas, fly ash concentration and its size were selected as parameters influencing the discharged amount of metallic species. In general, the coagulation between the newly formed metal particles and the fly ash particles was much greater than that between the metal particles themselves or between the fly ash particles themselves. It was also found that the amount of metallic species discharged into the atmosphere was increased due to coagulation. While most of PbO vapors produced from the combustion were eliminated due to combined effect of condensation and coagulation, the highly volatile species, PbCl$_{2}$ and SnCl$_{4}$ vapors tended to discharge into the atmosphere without experiencing either the condensation or the coagulation. For Sn vapors the tendency was between that of PbO vapors and that of PbCl$_{2}$ or SnCl$_{4}$. To restrain the discharged amount of hazardous metallic species, the coagulation should be restrained, the number concentration and the size of pre-existing fly ash particles should be increased, and the temperature drop rate of combustion gas should be kept low.

A Study on the Annealing Effect of SnO Nanostructures with High Surface Area (높은 표면적을 갖는 SnO 나노구조물의 열처리 효과에 관한 연구)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.536-542
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is a well-known n-type semiconductor that shows change in resistance in the presence of gas molecules, such as $H_2$, CO, and $CO_2$. Considerable research has been done on $SnO_2$ semiconductors for gas sensor applications due to their noble property. The nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in the sensing of gas molecules. In this study, SnO nanoplatelets were grown densely on Si substrates using a thermal CVD process. The SnO nanostructures grown by the vapor transport method were post annealed to a $SnO_2$ phase by thermal CVD in an oxygen atmosphere at $830^{\circ}C$ and $1030^{\circ}C$. The pressure of the furnace chamber was maintained at 4.2 Torr. The crystallographic properties of the post-annealed SnO nanostructures were investigated by Raman spectroscopy and XRD. The change in morphology was confirmed by scanning electron microscopy. As a result, the SnO nanostructures were transformed to a $SnO_2$ phase by a post-annealing process.