DOI QR코드

DOI QR Code

Ab initio Study on the Complex Forming Reaction of OH and H2O in the Gas Phase

  • Park, Jong-Ho (Department of Chemistry, Massachusetts Institute of Technology)
  • Received : 2015.03.16
  • Accepted : 2015.04.27
  • Published : 2015.06.30

Abstract

The estimation of the concentration of hydroxyl radical (OH) in the atmosphere is essential to build atmospheric models and to understand the mechanisms of the reactions involved in OH. Although water vapor is one of the most abundant species in the troposphere, only a few studies have been performed for the reaction of OH and water vapor. Here I demonstrate an ab initio study on the complex forming reation of OH with $H_2O$ in the gas phase performed based on density functional theory to calculate the reaction rate and the energy states of the reactant and the OH-$H_2O$ complex. The structure of the complex, which belongs to the Cs point group, was optimized at global minima. The transition state was not found at the B3LYP and MP2 levels of theory. Rate constants of the forward and the reverse reactions were calculated as $1.1{\times}10^{-16}cm^3\;molecule^{-1}\;s^{-1}$ and $5.3{\times}10^9\;s^{-1}$, respectively. The extremely slow rates of complex forming reaction and the resulting hydrogen atom exchange reaction of OH and $H_2O$, which are consistent with experimentally determined values, imply a negligible possibility of a change in OH reactivity through the title reaction.

Keywords

References

  1. Aloisio, S., Francisco, J.S. (2000) Radical-water complexes in earth's atmosphere. Accounts of Chemical Research 33, 825-830. https://doi.org/10.1021/ar000097u
  2. Arnold, S.T., Viggiano, A.A. (2001) Turbulent ion flow tube study of the cluster-mediated reactions of $SF_6^-$with $H_2O$, $CH_3OH$, and $C_2H_5OH$ from 50 to 500 Torr. Journal of Physical Chemistry A 105, 3527-3531. https://doi.org/10.1021/jp003967y
  3. Atkins, P.W. (1990) Physical Chemistry. (4th Ed.), Oxford University Press, Oxford.
  4. Bertram, A.K., Ivanov, A.V., Hunter, M., Molina, L.T., Molina, M.J. (2001) The reaction probability of OH on organic surfaces of tropospheric interest. Journal of Physical Chemistry A 105, 9415-9421. https://doi.org/10.1021/jp0114034
  5. Carslaw, N., Creasey, D.J., Heard, D.E., Lewis, A.C., McQuaid, J.B., Pilling, M.J., Monks, P.S., Bandy, B.J., Penkett, S.A. (1999) Modeling OH, $HO_2$, and $RO_2$ radiclas in the marine boundary layer: 1. Model contruction and comparison with field measurement. Journal of Geophysical Research 104, 30241-30255. https://doi.org/10.1029/1999JD900783
  6. Dubey M.K., Mohrschladt, R., Donahue, N.M., Anderson, J.G. (1997) Isotope specific kinetics of hydroxyl radical (OH) with water ($H_2O$): Testing models of reactivity and atmospheric fractionation. Journal of Physical Chemistry A 101, 1494-1500. https://doi.org/10.1021/jp962332p
  7. Dyke, T.R., Kack, K.M., Muenter, J.S. (1997) Microwavespectrum and structure of hydrogen-bonded water dimer. Journal of Chemical Physics 66, 492-497.
  8. Eisele, F.L., Mount, G.H., Fehsenfeld, F.G., Harder, J., Marovich, E., Parrish, D.D., Roberts, J., Trainer, M. (1994) Intercomparison of tropospheric OH and ancillary trace gas measurements at Fritz Peak Obaservatory, Colorado. Journal of Geophysical Research 99, 18605-18626. https://doi.org/10.1029/94JD00740
  9. Feyereisen, M.W., Feller, D., Dixon, D.A. (1996) Hydorgen bond energy of the water dimer. Journal of Physical Chemistry 100, 2993-2997. https://doi.org/10.1021/jp952860l
  10. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.W., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A. (2003) Gaussian 03 Revision B.01, Gaussian, Inc., Pittsburgh.
  11. Hansen, J.C., Francisco, J.S. (2002) Radical-molecule complexes: changing our perspective on the molecular mechanisms of radical-molecule reactions and their impact on atmospheric chemistry. ChemPhysChem 3, 833-840. https://doi.org/10.1002/1439-7641(20021018)3:10<833::AID-CPHC833>3.0.CO;2-0
  12. Karakus, N., Ozkan, R. (2005) Ab initio study of atmospheric reactions of the hydroxyl radical-water complex (OH-$H_2O$) with saturated hydrocarbons (methane, ethane and propane). Journal of Molecular Structure: THEOCHEM 724, 39-44. https://doi.org/10.1016/j.theochem.2004.10.075
  13. Kim, K.S., Kim, H.S., Jang, J.H., Kim, H.S., Mhin, B. (1991) Hydrogen bonding between the water molecule and the hydroxyl radical ($H_2O{\cdot}OH$): The 2A″ and 2A′ minima. Journal of Chemical Physics 94, 2057-2061. https://doi.org/10.1063/1.459927
  14. Laidler, K.J., Meiser, J.H. (1995) Physical Chemistry (2nd Ed.), Houghton Mifflin Co., Boston.
  15. Levine, R.D. (1990) The steric factor in transition state theory and in collision theory. Chemical Physics Letters 175, 331-337. https://doi.org/10.1016/0009-2614(90)80120-3
  16. Mckeen, S.A., Mount, G., Eisele, F.L., Williams, E., Harder, J., Goldan, P., Kuster, W., Liu, S.C., Baumann, K., Tanner, D., Fried, A., Sewell, S., Cantrell, C., Shetter, R. (1997) Photochemical modeling of hydroxyl and its relationship to other species during the tropospheric OH photochemistry experiment. Journal of Geophysical Research 102, 6467-6493. https://doi.org/10.1029/96JD03322
  17. Molina, M.J., Ivanov, A.V., Trakhtenberg, S., Molina, L.T. (2004) Atmospheric evolution of organic aerosol. Geophysical Research Letters 31, L22104. doi:10.1029/2004GL020910.
  18. Nanayakkara, A.A., Balint-Kurti, G.G., Williams, I.H. (1992) Barrier heights for hydrogen atome transfer reactions. Evaluation of ab initio molecular orbital methods for the degenerate exchange $HO{\cdot}+H_2O{\rightarrow}H_2O+{\cdot}OH$. Journal of Physical Chemistry 96, 3662-3669. https://doi.org/10.1021/j100188a021
  19. Newton, M.D., Kestner, N.R. (1983) The water dimer: Theory versus experiment. Chemical Physics Letters 94, 198-201. https://doi.org/10.1016/0009-2614(83)87573-3
  20. Park, J., Christov, C.I., Ivanov, A.V., Molina, M.J. (2009) On OH uptake by sea salt under humid conditions. Geophysical Research Letters 36, L02802. doi:10.1029/2008GL036160.
  21. Park, J., Ivanov, A.V., Molina, M.J. (2008) Effect of Relative Humidity on OH Uptake by Surfaces of Atmospheric Importance. Journal of Physical Chemistry A 112, 6968-6977. https://doi.org/10.1021/jp8012317
  22. Park, J., Ivanov, A.V., Molina, M.J. (2012) Experimental study for the identification of the nascent product of OH heterogeneous reaction with NaCl using chemical ionization mass spectrometry. Mass Spectrometry Letters 3, 108-111. https://doi.org/10.5478/MSL.2012.3.4.108
  23. Park, J., Ivanov, A.V., Molina, M.J. (2013) Experimental study on the release of $Cl_2$ from NaCl upon OH radical uptake. Microchemical Journal 110, 695-701. https://doi.org/10.1016/j.microc.2013.08.011
  24. Poppe, D., Zimmermann, J., Bauer, R., Brauers, T., Bruning, D., Callies, J., Dorn, H.-P., Hofzumahaus, A., Johnen, F.-J., Khedim, A., Koch, H., Koppmann, R., London, H., Muller, K.-P., Neuroth, R., Plass-Dulmer, C., Platt, U., Rohrer, F., Roth, E.-P., Rudolph, J., Schmidt, U., Wallasch, M., Ehhalt, D.H. (1994) Comparison of measured OH concentrations with model calculations. Journal of Geophysical Research 99, 16633-16642. https://doi.org/10.1029/94JD00378
  25. Seinfeld, J.H., Pandis, S.N. (1998) Atmospheric Chemistry and Physics. John Wiley & Sons, Inc., New York.
  26. Sennikov, P.G., Ignatov, S.K., Schrems, O. (2005) Complexes and Clusters of Water Relevant to Atmospheric Chemistry: $H_2O$ Complexes with Oxidants. ChemPhys Chem 6, 392-412. https://doi.org/10.1002/cphc.200400405
  27. Shirley, T.R., Brune, W.H., Ren, X., Mao, J., Lesher, R., Cardenas, B., Volkamer, R., Molina, L.T., Molina, M.J., Lamb, B., Velasco, E., Jobson, T., Alexander, M. (2006) Atmospheric oxidant in the Mexico City Metropolitan Area (MCMA) during April 2003. Atmospheric Chemistry and Physics 6, 2753-2765. https://doi.org/10.5194/acp-6-2753-2006
  28. Steinfeld, J.I., Francisco, J.S., Hase, W. (1998) Chemical Kinetics and Dynamics. (2nd Ed.), Prentice Hall, Upper Saddle River.
  29. Uchimaru, T., Chandra, A.K., Tsuzuki, S., Sugie, M., Sekiya, A. (2003) Ab initio investigation on the reaction path and rate for the gas-phase reaction of $HO+H_2O{\leftrightarrow}H_2O+OH$. Journal of Computational Chemistry 24, 1538-1548. https://doi.org/10.1002/jcc.10327
  30. Wang, B., Hou, H., Gu. Y. (1999) Density functional study of the hydrogen bonding: $H_2O{\cdot}OH$. Chemical Physics Letters 303, 96-100. https://doi.org/10.1016/S0009-2614(99)00190-6
  31. Wickramanayake, P.P., Gardner, G.J., Michael Siu, K.W., Berman, S.S. (1986) Ion/Molecule Reaction between Sulphur Hexafluoride Negative Ion and Water under Atmospheric Pressure Ionization Mass Spectrometric Conditions. International Journal of Mass Spectrometry and Ion Processes 69, 39-43. https://doi.org/10.1016/0168-1176(86)87040-9
  32. Xie, Y.M., Schaefer, H.F. (1993) Hydrogen-bonding between the water molecule and the hydroxyl radical ($H_2O{\cdot}HO$): The global minimum. Journal of Chemical Physics 98, 8829-8834. https://doi.org/10.1063/1.464492

Cited by

  1. O + OH vol.20, pp.18, 2018, https://doi.org/10.1039/C8CP00938D