• Title/Summary/Keyword: gas welding

Search Result 856, Processing Time 0.023 seconds

Mechanical Properties of Metal Inert Gas Welding Conditions of Railway-Vehicle Aluminum Under Frame (철도차량 AI 하부구조의 MIG 용접 조건에 따른 기계적 특성에 관한 연구)

  • Jung, Sang-Ho;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.17-25
    • /
    • 2021
  • In this study, the mechanical properties of railway-vehicle aluminum under frame was investigated based on the metal inert gas (MIG) welding conditions. An aluminum-alloy (6005A-T6) extruded material used in the lower panel of a railway vehicle was connected through MIG welding to determine the mechanical properties of MIG welds. Argon shielding gas and filler materials, such as ER5356 and ER4043, were used as consumable welding materials. For the welding conditions of the test specimen, welding frequencies of 2.5 and 4.5 Hz were applied using the SynchroPuls function, and the root faces were 1.0 and 1.5 mm. The mechanical properties of the MIG welds were determined through tensile, bending, and fatigue tests.

Characteristic and Measurement Technology of Inner Welding Residual Stresses in Thick Steel Structures (극후물재 용접부 내부잔류응력 측정기술 및 특성)

  • Park, Jeong-ung;An, Gyu-baek;Woo, Wanchuck
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.16-21
    • /
    • 2016
  • Recent keywords of the heavy industries are large-scale structure and productivity. Especially, the sizes of the commercial vessels and the offshore structures have been gradually increased to deliver goods and explore or produce oil and natural gas in the Arctic. High heat input welding processes such as electro gas welding (EGW) have been widely used for welding thick steel plates with flux-cored arc welding (FCAW), especially in the shipbuilding industries. Because high heat input welding may cause the detrimental effects on the fracture toughness of the welded joint and the heat affected zone, it is essential to obtain the sufficient toughness of welded joint. There are well known that the fracture toughness like CTOD, CVN, and KIC were very important factors in order to secure the safety of the structures. Furthermore, the welding residual stress should be considered to estimate the unstable fracture in both EGW and FCAW. However, there are no references on the welding residual stress distribution of EGW and FCAW with thick steel plates. Therefore the welding residual stresses were very important elements to evaluate the safety of the welded structure. Based on the measurement results, the characteristics of residual stress distribution through thickness were compared between one-pass electron gas welding and multi-pass flux-cored arc welding. The longitudinal residual stress in the multi-pass flux-cored arc welding is tensile through all thicknesses in the welding fusion zone. Meanwhile, longitudinal residual stress of EGW is tensile on both surfaces and compressive at the inside of the plate. The magnitude of residual stresses by electron gas welding is lower than that by flux-cored arc welding.

Porosity Reduction during Gas Tungsten Arc-Gas Metal Arc Hybrid Welding of Zinc Coated Steel Sheets (II) - Hybrid Welding Results (GTA-GMA 하이브리드공정에 따른 자동차용 아연도금강판의 용접부 기공감소 (II) - 하이브리드공정 적용 결과)

  • Ahn, Young-Nam;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.48-54
    • /
    • 2016
  • The use of Zn coated steel has increased in the automotive industry due to its excellent corrosion resistance. Conventionally the BIW(body-in-white) structure and the hang-on parts have been made of Zn coated steel and more recently Zn coated steel began to be applied in the chassis parts. During gas metal arc (GMA) welding of the chassis part, lap fillet joint used to be adopted but spatter generation and porosities are most important concerns. In the industrial applications, an intentional joint gap was made to avoid the weld defects but it is not easy to control the size of joint gap. In this research, gas tungsten arc (GTA) is combined with GMA welding where GTA precedes GMA. As pulsed arc was adopted as GMA, GTA was oscillated along the longitudinal direction by pulsing GMA, but the arc oscillation did not disturb the molten droplet transfer of GMA welding. By increasing the distance between GTA and GMA, the length of weld pool increased and porosity could be reduced. Moreover porosity in the welds was fully removed when the distance between two arcs was 15 mm.

Effects of gas formers on metal transfer of the self-shielded flux cored arc welding (Self-shielded flux cored arc welding시 가스 발생제가 용적 이행 현상에 미치는 영향)

  • 정재필;김경중;황선효
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.40-45
    • /
    • 1985
  • Wire meling characteristics were examined with variation of gas formers such as $MgCO_3, CaCO_3 and Li_ 2CO_ 3$ by self-shielded flux cored arc welding. The flux cored wire of overlap type was welded by DCRP. The results obtainedareas follows. 1) Drop type was observed with no gas former, repelled type with MgCO_3$ added and short circuit type with $Li_2CO_3$ added. The variation of transfer mode was related to the blowing force of $CO_2$ gas and the surface tension of the slag. 2) Droplet size increased with adding gas formers due to the effect of $CO_2$ gas cushion. 3) Core spikes were observed more frequently with increasing the amount of gas formers.

  • PDF

The Waveform Control and Blowhole Generation in the Wave Pulse MIG Welding for Galvanized Steel Sheets (아연도금강판에 대한 중첩펄스 MIG 용접에서의 파형제어와 기공 발생 특성)

  • Cho Sang-Myung;Kim Ki-Jung;Lee Byung-Woo
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.69-76
    • /
    • 2005
  • Recently, application of arc welding to galvanized carbon steel sheet is on the increasing Ould in the fields of automobile and construction industries. In arc welding process, zinc is evaporated in weld pool, even under the appropriate welding condition and produce blowhole and/or pit. Zinc gas cause instability of arc and increase spatter and fume. This research is purposed to minimize the heat-input and the formation of porosities in the welded joint of the galvanized carbon steel sheet using variable polarity AC wave pulse MIG welding system. An appropriate welding condition which showed low spatter and good bead appearance was acquired by applying the AC pulse MIG welding machine to DC duplicated MIG welding with the solid wire. When oxygen gas was added to shield gas of MIG welding for galvanized steel sheet, arc length was increased and arc stability was improved. In the AC duplicated welding, the loss of galvanized layer was decreased as the amount of heat-input was decreased when the EN ratio was increased under the condition that average welding current was evenly set.

A comparative study on the tensile bonding strength of gold alloy solder joints by dental soldering method (치과용 납착 방법에 따른 금합금 납착 연결부의 인장 결합강도 비교 연구)

  • Cho, Mi-Hyang;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • In this study, to provide the fundamental data on stable connection method for successful implants prosthesis, We fabricated the solder joint of gold alloy bar specimens by gas flame soldering method and laser welding and soldering method. It compared and studied the tensile strength of two soldering method by universal testing machine. The results using universal testing machine were as follow : The mean of tensile strength of solder joint bar in gas flame soldering method specimens was 363.89 $\pm$17.62 MPa, and the mean strength of laser welding and soldering method was 125.91 $\pm$ 19.66 MPa, so gas flame soldering method was better than laser welding and soldering method and the finding better way to improve tensile strength is needed in laser welding method. On weak loading condition and the part which is needed an accuracy, laser welding method is more effective and on long-span prosthesis and frequent chewing loading part, laser welding technique is recommended first and applying additional gas flame soldering technique would be better for making much more successful prosthesis.

  • PDF

A Effects of Magnetic Field For Fiber Laser Micro Welding Process Using Carbon Steel of SCP1-S (자기장 영향에 따른 냉연압연 강판의 파이버 레이저 마이크로 접합 공정)

  • Lee, C.K.;Lee, W.R.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.433-438
    • /
    • 2012
  • We have studied on welding dissimilar materials of Carbon steel SCP1-S by using laser beam. In this research we have performed some experiments to know the possibility of welding dissimilar materials using laser beam and magnetic fields by adjusting the power output of 35W laser. Other conditions of the experiments were as follows : the welding speed was varied in the range 10 m/min nitrogen gas was used as shield gas, the flow value of shield gas was ranged 10 L/min. In order to ascertain of the welded surface, we have done the tensile strength testing, the hardness testing and the microscope observation. As a result, we have found that tensile strength was the highest at the condition of the welding speed of 10mm/s, the flow value of 10 L/min, the gap of two materials 0, and the use of nitrogen gas. Above testings have also showed that the tensile strength was generally satisfactory since the penetration of welding was almost complete due to the thinness of the materials. In addition, the formation of the welded area was excellent when it had the highest tensile strength.

The Characteristics on Arc Pressure Distribution of TIG Welding with Shield Gas Mixing Ratio (TIG 용접에서의 실드 가스 혼합비에 따른 아크 압력분포 특성)

  • Oh Dong-Soo;Kim Yeong-Sik;Cho Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.41-47
    • /
    • 2005
  • Arc pressure is one of important factors in understanding physical arc phenomena. Especially it affects on the penetration, size and shape of TIG welding. Some researches were reported on the effect of arc pressure in low and middle current region. But there are not any research in high current region. The purpose of this study is to investigate the arc pressure distribution with mixing ratio of shield gas such as Ar and He gases. A Cu block with water cooling was specifically designed and used as an anode electrode in order to measure the arc pressure in high current region. Then, the arc pressure distribution was measured with change in welding current and mixing ratio of shield gases. The arc force was obtained by numerically integrating the measured results. As the results, it was shown that the arc pressure was concentrated at the central part of the arc in middle and high current regions when a pure Ar gas was used. In case of Ar + He mixing gas, the arc pressure was much lower than that of pure Ar gas. In addition, it was widely distributed to radial direction.

GMA Torch Configuration for Efficient Use of Argon Gas Part 1 : Effects of AMAG and DMAG Torches on Argon Composition (아르곤 가스를 효율적으로 사용하기 위한 GMA 용접 토치 구조 Part 1 : AMAG와 DMAG 토치가 아르곤 조성에 미치는 영향)

  • 최상균;문명철;유중돈
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.38-45
    • /
    • 1999
  • Shielding gas has significant effects on arc stability, metal transfer and weld quality in the gas metal arc welding (GMAW) process. The double gas-shielded MAG(DMAG) and auxiliary gas-shielded MAG (AMAG) torches are investigated for their capability to provide argon-rich gas mixture using small amount of argon gas through the inner and auxiliary nozzles, respectively. Argon composition with the DMAG torch is calculated numerically, and compared with the measured data using the gas chromatogrphy. Gas flow pattern of the DMAG torch is calculated to change from the laminar to turbulent flow when total gas flow rate becomes larger than 4.5 liter/min at room temperature. While argon-rich shielding gas was obtained using both the AMAG and DMAG torches, the AMAG torch provides higher argon composition than the DMAG torch, which demonstrates that argon gas can be utilized more efficiently with the AMAG torch.

  • PDF

A Study on Welding Performance Improvement of $CO_2$ Inverter Arc Welding Machine by Arc Reignition Detection (아크 재생 검출에 의한 $CO_2$ 인버터 아크 용접기의 용접성능향상에 관한연구)

  • 이정락
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.581-586
    • /
    • 2000
  • Gas metal arc welding(GMAW) uses a continuously fed electrode as a filler metal. The arc is shielded from atmospheric contamination by an inert gas active or inert/active gas mixture delivered through the welding gun and cable assembly. The recent research topics on $CO_2$ are welding machines are focused mainly on the reduction method of generated spatter by using new type consumable electrode metal or inverter control method. The various current waveform control methods have been researched for welding performance improvement. Until now current waveform control methods reduce to spatter occurred by instantaneous short circuiting,. but these methods is drawback that no reduce spatter occurred by arc reignition. In this paper the previous arc reignition current control method for welding performance improvement of inverter arc welding machine is studied and compared the various current control methods with the previous arc reignition current control method.

  • PDF