• Title/Summary/Keyword: gas volume fraction

Search Result 160, Processing Time 0.033 seconds

An Analytical Method of Formaldehyde in Exhaust Gases from Industrial Facilities using a HPLC under Isocratic Conditions (Isocratic 조건하에서 HPLC를 이용한 산업시설 배출가스 중 포름 알데하이드 분석)

  • Kim, Jun-Pyo;Park, Seung-Shik;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.616-624
    • /
    • 2018
  • In this study, a previous DNPH (2,4-dinitrophenylhydrazine) coupled with high performance liquid chromatography (HPLC) method to measure the concentration of formaldehyde in ambient and source environments has been improved. To improve the disadvantage of the previous HPLC method, an appropriate composition ratio of mobile phase (water: acetonitrile (ACN)) was determined and an isocratic analysis was conducted. Furthermore, limit of detection (LOD), limit of quantitation(LOQ), accuracy, and precision were investigated to verify the reliability of the analytical conditions determined. Finally, samples of exhaust gases from five different industrial facilities were applied to HPLC analytial method proposed to determine their formaldehyde concentrations. The appropriate composition ratio of the mobile phase under the isocratic condition was a mixture of water(40%) and ACN(60%). As the volume fraction of the organic solvent ACN increases, retention time of the formaldehyde peak was reduced. Detection time of formaldehyde peak determined using the proposed isocratic method was reduced from 7 minutes(previous HPLC method) to approximately 3 minutes. LOD, LOQ, accuracy, and precision of the formaldehyde determined using standard solutions were 0.787 ppm, 2.507 ppm, 93.1%, and 0.33%, respectively, all of which are within their recommended ranges. Average concentrations of the formaldehyde in five exhaust gases ranged from 0.054 ppm to 1.159 ppm. The lowest concentration (0.054 ppm) was found at samples from waste gas incinerator in a bisphenol-A manufacturing plant. The highest was observed at samples from the absorption process in manufacturing facilities of chemicals including formaldehyde and hexamine. The analytical time of the formaldehyde in ambient air can be shortened by using the isocratic analytical method under appropriate mobile phase conditions.

Variations and Trends in Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) in Air (대기 중 다환방향족 탄화수소류의 오염도 변화 특성)

  • Chung, Yong;Park, Seong-Eun;Hwang, Man-Sik;Hong, Ji-Yeon
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.1_2
    • /
    • pp.43-53
    • /
    • 1998
  • Ambient air levels of polycyclic aromatic hydrocarbons(PAHs) are of concern because of their potential for adverse health effects including transformation of some of these substances to mutagens and carcinogens by mammalian microsomal enzyme system. Airbone particulate samples were collected by a conventional high-volume sampler and by an Anderson cascade impactor on 2 to 3 days in each month over a period of 1 year at a representative site of the heavy traffic area of Seoul from beptember 1994 to August 1995. Ten individual PAHs in sizable air particulates of each stage of two months were separated and analyzed by gas chromatography/mass spectrometry. As a results of analysis, the gross concentrations of PAHs in the fine and coarse particles were higher in the winter month than in the spring, followed in descending order by in the fall and summer. In a study of dependency of 10 PAHs compounds on size distribution of particles at heavy traffic area found that about 85% of the total PAHs content was associated with particles less than 2.0um (fine particles) in diameter of winter sampling period. while 79% were associated with this size fraction during summer period. In according to the mean concentrations of the 10 PAHs in 7 size classification from < 0.38 to> 10.1, the 'size was the smaller, PAHs concentration was the higher. Thus it was found that PAHs concentration was greatly affected by air particle size. Annual mean benzo(a)pyrene equivalents was 5.88ng/m$^3$ and obtained by applying, toxic equivalency factor developed by Nisbet and Lagoy.

  • PDF

Fabrication of 13Cr-1.5Nb-Fe Alloy Powder and AC Magnetic Properties of the Sintered Magnetic Core (소결 13Cr-1.5Nb-Fe 합금의 교류 자기 특성)

  • 오환수;김택기;조용수
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.1
    • /
    • pp.11-15
    • /
    • 2000
  • 13Cr-1.5Nb-Fe alloy powder prepared by water atomizing method is reduced with flowing hydrogen gas. The characteristics of a reduced alloy powder is investigated and magnetic cores formed by using the reduction power sintered in the vacuum of ∼10$\^$-5/ Torr. In order to study on the magnetic cores permeability and power loss in alternating magnetic field are also measured. The result of particle size distribution shows the paticle size is 70 ㎛ at volume fraction of 50 %. The saturation magnetization of the reduced alloy powder is 160 emu/g. The relative peak permeability (H$\_$a/=5Oe) of a magnetic core is 400 and the power loss (B$\_$m/=80G) 0.12 mW/cc at sintering temperature of 1,200 $\^{C}$, 10 ton/㎠ forming pressure, and 1 kHz.

  • PDF

Numerical Simulation of Unsteady Cavitation in a High-speed Water Jet

  • Peng, Guoyi;Okada, Kunihiro;Yang, Congxin;Oguma, Yasuyuki;Shimizu, Seiji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.66-74
    • /
    • 2016
  • Concerning the numerical simulation of high-speed water jet with intensive cavitation this paper presents a practical compressible mixture flow method by coupling a simplified estimation of bubble cavitation and a compressible mixture flow computation. The mean flow of two-phase mixture is calculated by URANS for compressible fluid. The intensity of cavitation in a local field is evaluated by the volume fraction of gas phase varying with the mean flow, and the effect of cavitation on the flow turbulence is considered by applying a density correction to the evaluation of eddy viscosity. High-speed submerged water jets issuing from a sheathed sharp-edge orifice nozzle are treated when the cavitation number, ${\sigma}=0.1$, and the computation result is compared with experimental data The result reveals that cavitation occurs initially at the entrance of orifice and bubble cloud develops gradually while flowing downstream along the shear layer. Developed bubble cloud breaks up and then sheds downstream periodically near the sheath exit. The pattern of cavitation cloud shedding evaluated by simulation agrees experimental one, and the possibility to capture the unsteadily shedding of cavitation clouds is demonstrated. The decay of core velocity in cavitating jet is delayed greatly compared to that in no-activation jet, and the effect of the nozzle sheath is demonstrated.

CALPUFF Modeling of Odor/suspended Particulate in the Vicinity of Poultry Farms (축사 주변의 악취 및 부유분진의 CALPUFF 모델링: 계사 중심으로)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.90-104
    • /
    • 2019
  • In this study, CALPUFF modeling was performed, using a real surface and upper air meterological data to predict trustworthy modeling-results. Pollutant-releases from windscreen chambers of enclosed poultry farms, P1 and P2, and from a open poultry farm, P3, and their diffusing behavior were modeled by CALPUFF modeling with volume sources as well as by finally-adjusted CALPUFF modeling where a linear velocity of upward-exit gas averaged with the weight of each directional-emitting area was applied as a model-linear velocity ($u^M_y$) at a stack, with point sources. In addition, based upon the scenario of poultry farm-releasing odor and particulate matter (PM) removal efficiencies of 0, 20, 50 and 80% or their corresponding emission rates of 100, 80, 50 and 20%, respectively, CALPUFF modeling was performed and concentrations of odor and PM were predicted at the region as a discrete receptor where civil complaints had been frequently filed. The predicted concentrations of ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ were compared with those required to meet according to the offensive odor control law or the atmospheric environmental law. Subsequently their required removal efficiencies at poultry farms of P1, P2 and P3 were estimated. As a result, a priori assumption that pollutant concentrations at their discrete receptors are reduced by the same fraction as pollutant concentrations at P1, P2 and P3 as volume source or point source, were controlled and reduced, was proven applicable in this study. In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of P1 compared with those of point source-adopted CALPUFF modeling, were predicted similar each other. However, In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of both ammonia and $PM_{10}$ at not only P2 but also P3 were predicted higher than those of point source-adopted CALPUFF modeling. Nonetheless, the volume source-adopted CALPUFF modeling was preferred as a safe approach to resolve civil complaints. Accordingly, the required degrees of pollution prevention against ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ at P1 and P2, were estimated in a proper manner.

Interface Capturing for Immiscible Two-phase Fluid Flows by THINC Method (THINC법을 이용한 비혼합 혼상류의 경계면 추적)

  • Lee, Kwang-Ho;Kim, Kyu-Han;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.277-286
    • /
    • 2012
  • In the numerical simulation of wave fields using a multi-phase flow model that considers simultaneous flows of materials with different states such as gas, liquid and solid, there is need of an accurate representation of the interface separating the fluids. We adopted an algebraic interface capturing method called tangent of hyperbola for interface-capturing(THINC) method for the capture of the free-surface in computations of multi-phase flow simulations instead of geometrical-type methods such a volume of fluid(VOF) method. The THINC method uses a hyperbolic tangent functions to represent the surface, and compute the numerical flux for the fluid fraction functions. One of the remarkable advantages of THINC method is its easy applicability to incorporate various numerical codes based on Navier-Stokes solver because it does not require the extra geometric reconstruction needed in most of VOF-type methods. Several tests were carried out in order to investigate the advection of interfaces and to verify the applicability of the THINC method to wave fields based on the one-field model for immiscible two-phase flows (TWOPM). The numerical results revealed that the THINC method is able to track the interface between air and water separating the fluids although its algorithm is fairly simple.

Three-Dimensional Myocardial Strain for the Prediction of Clinical Events in Patients With ST-Segment Elevation Myocardial Infarction

  • Wonsuk Choi;Chi-Hoon Kim;In-Chang Hwang;Chang-Hwan Yoon;Hong-Mi Choi;Yeonyee E Yoon;In-Ho Chae;Goo-Yeong Cho
    • Journal of Cardiovascular Imaging
    • /
    • v.30 no.3
    • /
    • pp.185-196
    • /
    • 2022
  • BACKGROUND: Two-dimensional (2D) strain provides more predictive power than ejection fraction (EF) in patients with ST-elevation myocardial infarction (STEMI). 3D strain and EF are also expected to have better clinical usefulness and overcome several inherent limitations of 2D strain. We aimed to clarify the prognostic significance of 3D strain analysis in patients with STEMI. METHODS: Patients who underwent successful revascularization for STEMI were retrospectively recruited. In addition to conventional parameters, 3D EF, global longitudinal strain (GLS), global area strain (GAS), as well as 2D GLS were obtained. We constructed a composite outcome consisting of all-cause death or re-hospitalization for acute heart failure or ventricular arrhythmia. RESULTS: Of 632 STEMI patients, 545 patients (86.2%) had a reliable 3D strain analysis. During median follow-up of 49.5 months, 55 (10.1%) patients experienced the adverse outcome. Left ventricle EF, 2D GLS, 3D EF, 3D GLS, and 3D GAS were significantly associated with poor outcomes. (all, p < 0.001) The maximum likelihood-ratio test was performed to evaluate the additional prognostic value of 2D GLS or 3D GLS over the prognostic model consisting of clinical characteristics and EF, and the likelihood ratio was 15.9 for 2D GLS (p < 0.001) and 1.49 for 3D GLS (p = 0.22). CONCLUSIONS: The predictive power of 3D strain was slightly lower than the 2D strain. Although we can obtain 3D strains, volume, and EF simultaneously in same cycle, the clinical implications of 3D strains in STEMI need to be investigated further.

Atmospheric concentration and mutagenicity of organic pollutants of suspended particulate in Seoul (서울시 대기중 유기오염물질의 농도와 돌연변이원성에 대한 연구)

  • Shin, Dong-Chun;Chung, Yong;Moon, Young-Hahn;Roh, Jae-Hoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.23 no.1 s.29
    • /
    • pp.43-56
    • /
    • 1990
  • To evaluate the difference of concentration and mutagenicity of organic pollutants between residential and traffic area of Seoul, air samples were collected in Bulkwang (residential) and Shinchon (traffic) area. Samples were analyzed to measure the concentration of extractable organic matters (EOM) and their subfractions and mutagenicities were tested using Salmonella typhimurium TA 98. The concentrations of polycyclic aromatic hydrocarbons (PAHs) were also measured by gas-chromatography and compared between two areas. The results were as follows ; 1. While the concentration of total suspended particulate (TSP) in residential area was below the environmental standard in annual average, the concentration in traffic area was above the standard and was up to its maximum $256{\mu}g/m^3$ in November. The difference of TSP concentrations in both areas of each month was statistically significant (P<0.05). 2. The concentration of fine particle in traffic area was significantly higher compare to that in residential area and showed statistically significant monthly difference in both areas (P<0.05). The proportion of concentration of fine particle to TSP was 55-68%. 3. Mean concentrations of EOM in residential and traffic areas were $4.3{\mu}g/m^3\;and\;5.3{\mu}g/m^3$ respectively. The proportion of amount of EOM from fine particle to EOM from TSP was 70-88%. 4. While the percentage of polar neutral organic compounds (POCN) of fine particle in Bulkwang's sample was higher compare to Shinchon's sample, the percentage of aliphatic compounds of fine particle in Shinchon's sample was higher compare to Bulkwang's sample. The percentages of PAH fraction were as low as 6-10% in both areas. 5. The mutagenic activity of nit concentration of organic matters extracted from fine particle was higher compare to that of coarse particle and was increased when metabolically activated with S9. Mutagenicities with metabolic activation calculated by unit air volume were significantly different between residential and traffic area, $17\;revertants/m^3$\;and\;22\;revertants/m^3$ respectively. 6. The concentrations of benzo(a)pyrene in fine particle of traffic and residential areas were $3.10ng/m^3\;and\;2.02ng/m^3$ respectively. Sixteen PAHs were higher in samples of traffic area compare to residential area and also concentrations of PAHs in fine particle were higher compare to coarse particle.

  • PDF

Evaluation of Parameters of Gas Exchange During Partial Liquid Ventilation in Normal Rabbit Lung (토끼의 정상 폐 모델에서 부분액체환기 시 가스교환에 영향을 주는 인자들에 대한 연구)

  • An, Chang-Hyeok;Koh, Young-Min;Park, Chong-Wung;Suh, Gee-Young;Koh, Won-Jung;Lim, Sung-Yong;Kim, Cheol-Hong;Ahn, Young-Mee;Chung, Man-Pyo;Kim, Ho-Joong;Kwon, O-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.1
    • /
    • pp.14-23
    • /
    • 2002
  • Background: The opitmal ventilator setting during partial liquid ventilation(PLV) is controversial. This study investigated the effects of various gas exchange parameters during PLV in normal rabbit lungs in order to aid in the development of an optimal ventilator setting during PLV. Methods: Seven New-Zealand white rabbits were ventilated in pressure-controlled mode with the following settings; tidal volume($V_T$) 8 mL/kg, positive end-expiratory pressure(PEEP) 4 $cmH_2O$, inspiratory-to-expiratory ratio(I:E ratio) 1:2, fraction of inspired oxygen($F_TO_2$) 1.0. The respiration rate(RR) was adjusted to keep $PaCO_2$ between 35~45 mmHg. The ventilator settings were changed every 30 min in the following sequence : (1) Baseline, as the basal ventilator setting, (2) Inverse ratio, I:E ratio 2:1, (3) high PEEP, adjust PEEP to achieve the same mean inspiratory pressure (MIP) as in the inverse ratio, (4) High $V_T$, $V_T$ 15 mL/kg, (5) high RR, the same minute ventilation (MV) as in the High $V_T$. Subsequently, the same protocol was repeated after instilling 18 mL/kg of perfluorodecalin for PLV. The parameters of gas exchange, lung mechanics, and hemodynamics were examined. Results: (1) The gas ventilation(GV) group showed no significant changes in the $PaO_2$ at all phases. The $PaCO_2$ was lower and the pH was higher at the high $V_T$ and high RR phases(p<0.05). No significant changes in the lung mechanics and hemodynamics parameters were observed. (2) The baseline $PaO_2$ for the PLV was $312{\pm}$ mmHg. This was significantly lower when decreased compared to the baseline $PaO_2$ for GV which was $504{\pm}81$ mmHg(p=0.001). During PLV, the $PaO_2$, was significantly higher at the high PEEP($452{\pm}38$ mmHg) and high $V_T$ ($461{\pm}53$ mmHg) phases compared with the baseline phase. However, it did not change significantly during the inverse I:E ratio or the high RR phases. (3) The $PaCO_2$ was significantly lower at high $V_T$ and RR phases for both the GV and PLV. During the PLV, $PaCO_2$ were significantly higher compared to the GV (p<0.05). (4) There were no important or significant changes in of baseline and high RR phases lung mechanics and hemodynamics parameters during the PLV. Conclusion: During PLV in the normal lung, adequate $V_T$ and PEEP are important for optimal oxygenation.

Evaluation of Hemodynamic Failure with Acetazolamide Challenged $^{123}I-IMP$ Brain SEPCT and PET (PET과 Acetazolamide 부하 $^{123}I-IMP$ 뇌혈류 SPECT를 이용한 혈역학적 부전의 평가)

  • Chun, Kyung-Ah;Cho, In-Ho;Won, Kyu-Jang;Lee, Hyung-Woo;Hayashida, Kohei
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.2
    • /
    • pp.94-102
    • /
    • 2003
  • Purpose : Cerebral blood flow (CBF) reactivity to acetazolamide (ACZ) is useful to select patients with hemodynamic failure. However, it is still a matter of speculation that varying degrees of regional CBF increases after ACZ administration represent the severity or stage of regional hemodynamic failure as assessed by positron emission tomography (PET). We studied to elucidate whether ACZ challenge $^{123}I-IMP$ brain single photon emission tomography (SPECT) can accurately grade the seventy of regional hemodynamic failure. Materials and Methods: Eighteen patients (M: 16, F: 2, average age: 61 years) with unilateral occlusive disease of the internal carotid artery or the trunk of the middle cerebral artery (MCA). Patients undewent $^{123}I-IMP$ brain SPECT study with acetazolamide challenge and PET study was carried out within 2 weeks before and after SPECT study. Five healthy volunteers with a mean age of 48 years (range: 28-73 yr, M: 3, F: 2) underwent PET studies to determine normal values. In SPECT study, an asymmetry index (Al)-the percentage of radioactivity of region of interest (ROI) in the occlusive cerebrovascular lesion to the contralateral homologous ROI-was used for numerical evaluation of relative $^{123}I-IMP$ distribution. In PET study, regional CBF, oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen ($CMRO_2$) and cerebral blood volume (CBV) values were measured with $^{15}O-labeled$ gas inhalation method and the values were used for comparison with Al (Al during acetazolamide challenge-Al of basal study) on the SPECT study. ROls were classified by severity into three groups (normal, stage I and stage II). Results: Mean values of Al in areas with normal, stage I and stage II hemodynamic failure were $6.25{\pm}7.77%\;(n=107),\;-10.38{\pm}10.41%\:(n=117)\;and\;13.30{\pm}10.51%\;(n=140)$, respectively. Al significantly differed with each groups (p<0.05). Correlation between Al and CBF, OEF and CBV/CBF in hemisphere with occlusive cerebrovascular lesion was 0.20 (p<0.01), -0.28 (p<0.01) and -0.28 (p<0.01), respectively. Conclusion: We concluded that $^{123}I-IMP$ brain SPECT with acetazolamide challenge could determine the severity ad stage of regional hemodynamic failure as assessed by PET.