PET과 Acetazolamide 부하 $^{123}I-IMP$ 뇌혈류 SPECT를 이용한 혈역학적 부전의 평가

Evaluation of Hemodynamic Failure with Acetazolamide Challenged $^{123}I-IMP$ Brain SEPCT and PET

  • Chun, Kyung-Ah (Department of Nuclear Medicine, Yeungnam University Hospital) ;
  • Cho, In-Ho (Department of Nuclear Medicine, Yeungnam University Hospital) ;
  • Won, Kyu-Jang (Department of Nuclear Medicine, Yeungnam University Hospital) ;
  • Lee, Hyung-Woo (Department of Nuclear Medicine, Yeungnam University Hospital) ;
  • Hayashida, Kohei (Department of Radiology, National Cardiovascular Center)
  • 발행 : 2003.04.30

초록

목적: 아세타졸아마이드를 이용한 뇌혈류 SPECT는 폐쇄성 뇌혈관질환이 있는 환자에서 혈역학적 부전을 평가 하는데 유용하다. 본 연구는 아세타졸아마이드 부하 $^{123}I-IMP$ SPECT를 실시하여 뇌국소부위의 혈역학적 부전의 정도를 정확히 평가할 수 있는지를 살펴보았다. 대상 및 방법: 뇌혈관 질환이 의심되는 18명의 (남: 16, 여: 2, 평균연령 61세) 환자를 대상으로 하였다. 뇌국소부위의 혈관확장 예비능을평가하기 위하여 아세타졸아마이드 투여후 $^{123}I-IMP$ SPECT를 실시하였다. PET은 SPECT 검사 전후로 2주 이내의 간격을 두고 실시하였으며, 뇌혈류, 산소추출분획, 뇌산소대사율 및 뇌혈액량을 구하였다. 모두 46개의 직사각형의 관심영역 (ROIs)을 4개의 다른 뇌단층면에서 직접그리고 병변 부위의 관심영역내에서의 $^{123}I-IMP$ 섭취와 반대측의 동일영역의 관심영역에서 $^{123}I-IMP$ 섭취비율인 AI 를 구하여 PET 에서 얻어진 자료들과 비교하였다. 결과: 18명의 환자의 414 개의 해부학적 영역에서의 뇌의 혈역학적인 평가는 각 환자의 산소수출분획과 뇌혈류/뇌혈액량에 따라 정상 (n=107), stage I (n=117) 또는 stage II (n=140) 로 나누었다. 혈관 확장 예비능을 나타내는 ${\triangle}AI$ (아세타졸아마이드투여시 AI 값-기저상태의 AI 값) 의 값은 정상, stage I 및 stage II 에서 각각 $-6.25{\pm}7.77%,\;-10.38{\pm}10.41%$$-13.30{\pm}10.51%$으로 세군간에 유의한 차이가 있었다 (p<0.05). 뇌혈관 협착이 있는 대뇌반구에서 ${\triangle}AI$와 뇌혈류량, 산소추출분획 및 뇌혈액량/뇌혈류량의 상관계수는 각각 0.20, -0.28 및 -0.28로 통계적으로 유의한 상관관계를 보였다(p<0.01). 결론: 정상인과 stage I 그리고 stage II 의 혈역학적부전 환자들간의 뇌혈관확장 예비능에 유의한 차이가 있었으며, 이러한 결과로 볼 때 아세타졸아마이드 부하에 대한 국소뇌혈류의 변화는 뇌관류압에 대한 보상적 혈관확장의 정도를 비교적 정확히 반영할 수 있다고 볼 수 있다.

Purpose : Cerebral blood flow (CBF) reactivity to acetazolamide (ACZ) is useful to select patients with hemodynamic failure. However, it is still a matter of speculation that varying degrees of regional CBF increases after ACZ administration represent the severity or stage of regional hemodynamic failure as assessed by positron emission tomography (PET). We studied to elucidate whether ACZ challenge $^{123}I-IMP$ brain single photon emission tomography (SPECT) can accurately grade the seventy of regional hemodynamic failure. Materials and Methods: Eighteen patients (M: 16, F: 2, average age: 61 years) with unilateral occlusive disease of the internal carotid artery or the trunk of the middle cerebral artery (MCA). Patients undewent $^{123}I-IMP$ brain SPECT study with acetazolamide challenge and PET study was carried out within 2 weeks before and after SPECT study. Five healthy volunteers with a mean age of 48 years (range: 28-73 yr, M: 3, F: 2) underwent PET studies to determine normal values. In SPECT study, an asymmetry index (Al)-the percentage of radioactivity of region of interest (ROI) in the occlusive cerebrovascular lesion to the contralateral homologous ROI-was used for numerical evaluation of relative $^{123}I-IMP$ distribution. In PET study, regional CBF, oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen ($CMRO_2$) and cerebral blood volume (CBV) values were measured with $^{15}O-labeled$ gas inhalation method and the values were used for comparison with Al (Al during acetazolamide challenge-Al of basal study) on the SPECT study. ROls were classified by severity into three groups (normal, stage I and stage II). Results: Mean values of Al in areas with normal, stage I and stage II hemodynamic failure were $6.25{\pm}7.77%\;(n=107),\;-10.38{\pm}10.41%\:(n=117)\;and\;13.30{\pm}10.51%\;(n=140)$, respectively. Al significantly differed with each groups (p<0.05). Correlation between Al and CBF, OEF and CBV/CBF in hemisphere with occlusive cerebrovascular lesion was 0.20 (p<0.01), -0.28 (p<0.01) and -0.28 (p<0.01), respectively. Conclusion: We concluded that $^{123}I-IMP$ brain SPECT with acetazolamide challenge could determine the severity ad stage of regional hemodynamic failure as assessed by PET.

키워드

참고문헌

  1. Vorstrup S, Brun B, Lassen NA. Evaluation of the cerebral vasodilatory capacity by the acetazolamide test before EC-IC bypass surgery in patients with occlusion of the internal carotid artery. Stroke 1986;17:1291-1298
  2. Sullivan HG, Kingsbury TB, Morgan ME, Jeffcoat RD, Allison JD, Goode JJ, et al. The rCBF response to Diamox in normal subjects and cerebrovascular disease patients. J Neurosurg 1987;67:525-534
  3. Sorteberg W, Lindegaard KF, Rootwelt K, Dak A, Nyberg-Hansen R, Nomes H. Effect of acetazolamide on cerebral artery blood velocity and regional cerebral blood flow in normal subjects. Acta Neurochir 1989;97:139-145
  4. Rogg J, Rutigliano M, Yonas H, Johnson DW, Pentheny S, Latchaw RE. The acetazolamide challenge: Imaging techniques designed to evaluate cerebral blood flow reserve. AJNR 1989;10:803-810
  5. Knop J, Thie A, Fuchs C, Siepmann G, Zeumer H. 99mTc-HMPAO-SPECT with acetazolamide challenge to detect hemodynamic compromise in occlusive cerebrovascular disease. Stroke 1992;23:1733-1742
  6. Chimowitz MI, Furlan AJ, Jones SC, Sila CA, Lorig RL, Paranandi L, et al. Transcranial Doppler assessment of cerebral perfusion reserve in patients with carotid occlusive disease and no evidence of cerebral infarction. Neurology 1993;43:353-357
  7. Vorstrup S, Henriksen L, Paulson OR Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate of oxygen. J Clin Invest 1984;74:1634-1639
  8. Gibbs JM, Wise RJS, Leenders KL, Jones T. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1984;1:310-314
  9. Powers WJ, Press GA, Grubb RL, Jr, Gado M, Raichle ME. The effect of hemodynamically significant carotid artery disease on the hemodynamic status of cerebral circulation. Ann Intern Med 1987;106:27-35
  10. Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 1991;29:231240. 11. Kanno I, Uemura K, Higano S, Murakami M, Iida H, Miura S, et al. Oxygen extraction fraction at maximally vasodilated tissue in the ischemic brain estimated from the regional CO2 responsiveness measured by positron emission tomography. J Cereb Blood Flow Metab 1988;8:227-235
  11. Nariai T, Suzuki R, Hirakawa K, Maehara T, Ishii K, Senda M. Vascular reserve in chronic cerebral ischemia measured by the acetazolamide challenge test: comparison with positron emission tomography. Am J Neuroradiol 1995;16:563-570
  12. Herold S, Brown MM, Frackowiak RSJ, Mansfield AO, Thomas DJ, Marshall J. Assessment of cerebral hemodynamic reserve: correlation between PET parameters and CO2 reactivity measured by the intravenous 133xenon injection technique. J Neurol Neurosurg Psychiatry 1988;51:1045-1050
  13. Hirano T, Minematsu K, Hasegawa Y, Tanaka Y, Hayashida K, Yamaguchi T. Acetazolamide reactivity on 123I-IMP single photon emission computed tomography in patients with major cerebral artery occlusive disease: Correlation with positron emission tomography parameters. J Cereb Blood Flow Metab 1994;14:763-770
  14. Sugimori H, Ibayashi S, Fujji K, Sadishima S, Kuwabara Y, Fujishima M. Can transcranial Doppler really detect reduced cerebral perfusion state? Stroke 1995;26:2053-2060
  15. Gotoh F, Tanaka K. Regulation of cerebral blood flow. In: Handbook of Clinical Neurology: Vascular diseases, Part I, Chapter 3, Vinken PJ, Bruyn GW, Klawans HL (eds), Elsevier, Excepta Med, Biomedical Division, Amsterdam, 1988:pp47-77
  16. Kontos HA, Wei EP, Raper AJ, Rosenblum WI, Navari RM, Patterson Jr JL. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol 1978;234:H371-H383
  17. Mchedlishvili G, Kuridze N, The modular organization of the pial arterial system in phylogeny. J Cereb Blood Flow Metab 1984;4:391-396
  18. Keyeux A, Ochrymowicz-Bemelmans D, Charlier AA. Induced response to hypercapnia in the two-compartment total cerebral blood volume: Influence on brain vascular reserve and flow efficiency. J Cereb Blood Row Metab 1995;15: 1121-1131
  19. Hasegawa Y, Yamaguchi T, Tsuchiya T, Minematsu K, Nishimura T. Spontaneous improvement of hemodynamic reserve in patients with major cerebral artery occlusion or severe stenosis. J Cereb Blood Flow Metab 1991;11:S663
  20. Hasegawa Y, Yamaguchi T, Tsuchiya T, Minematsu K, Nishimura T. Sequential change of hemodynamic reserve in patients with major cerebral artery occlusion or severe stenosis. Neuroradiology 1992;34:15-21
  21. Widder B, Kleiser B, Krapf H. Course of cerebrovascular reactivity in patients with carotid artery occlusions. Stroke 1994;25:1963-1967
  22. Hasegawa Y, Yamaguchi T. Long-term prognosis and blood flow reactivity to acetazolamide in atherothrombotic brain ischemia [in Japanese with English abstract]. Clin Neurol (Tokyo). 1993;33:169-174
  23. Yamaguchi S, Fukuyama H, Yamauchi H, Kimura J. Hemodynamics in the cerebral cortex and basal ganglia-Observation on normal volunteers and patients with lacmmes using PET [in Japanese with. English abstract]. Clin Neural (Tokyo) 1991;31:1070-1076
  24. Frackowiak RSJ, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional blood flow and oxygen metabolism in men using 150 and positron emission tomography: Theory, procedure, and normal values. J Comput Assist Tomogra 1980;4:727-736
  25. Pantano P, Baron JC, Lebrun-Grandie P, Duquesnoy N, Bousser MG, Comar D. Regional cerebral blood flow and oxygen consumption in human aging. Stroke 1984;15:635-641
  26. Yamaguchi S, Kanno J, Uemura K, Shishido F, Inugami A, Ogawa T, et al. Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 1986;17:1220-1228
  27. Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJR, et al. Cerebral blood flow, blood volume and oxygen utilization: Normal values and effect of age. Brain 1990;113:27-47