• 제목/요약/키워드: gas turbine blade

검색결과 190건 처리시간 0.026초

Analysis and structural design of various turbine blades under variable conditions: A review

  • Saif, Mohd;Mullick, Parth;Imam, Ashhad
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.11-24
    • /
    • 2019
  • This paper presents a review study for energy-efficient gas turbines (GTs) with cycles which contributes significantly towards sustainable usage. Nonetheless, these progressive engines, operative at turbine inlet temperatures as high as $1600^{\circ}C$, require the employment of highly creep resistant materials for use in hotter section components of gas turbines like combustion chamber and blades. However, the gas turbine obtain its driving power by utilizing the energy of treated gases and air which is at piercing temperature and pushing by expanding through the several rings of steady and vibratory blades. Since the turbine blades works at very high temperature and pressure, high stress concentration are observed on the blades. With the increasing demand of service, to provide adequate efficiency and power within the optimized level, turbine blades are to be made of those materials which can withstand high thermal and working load condition for longer cycle time. This paper depicts the recent developments in the field of implementing the best suited materials for the GTs, selection of proper Thermal Barrier Coating (TBC), fracture analysis and experiments on failed or used turbine blades and several other designing and operating factors which are effecting the blade life and efficiency. It is revealed that Nickel based Superalloys were promising, Cast Iron with Zirconium and Pt-Al coatings are used as best TBC material, material defects are the foremost and prominent reason for blade failure.

발전용 소형가스터빈 블레이드 공진 안정성 평가 (Evaluation of Blade Resonance of 5MW Power Generation Gas Turbine)

  • 안성종;박누가;윤태준;석진익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.433-438
    • /
    • 2011
  • Doosan has been developing a 5MW class gas turbine engine, DGT-5. Campbell diagram has been used for prediction of possible occurrence of resonances of rotating machinery. The Campbell diagram consists of blade natural frequency and excitation frequency. In this paper, modal characteristics of compressor and turbine blades are investigated and Campbell diagram is obtained. We calculated compressor and turbine blade's natural frequency using ANSYS tool. The result has been verified through test.

  • PDF

LP Compressor Blade Vibration Characteristics at Starting Conditions of a 100 MW Heavy-duty Gas Turbine

  • Lee, An-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.895-903
    • /
    • 2004
  • In this paper are presented the blade vibration characteristics at the starting conditions of the low pressure multistage axial compressor of heavy-duty 100 MW gas turbine. Vibration data have been collected through strain gauges during aerodynamic tests of the model compressor. The influences of operating modes at the starting conditions are investigated upon the compressor blade vibrations. The exciting mechanisms and features of blade vibrations are investigated at the surge, rotating stall, and buffeting flutter. The influences of operating modes upon blade dynamic stresses are investigated for the first and second stages. It is shown that a high dynamic stress peak of 120 MPa can occur in the first stage blades due to resonances with stall cell excitations or with inlet strut wake excitations at the stalled conditions.

터빈 블레이드 회전수 변화와 터빈 블레이드 엣지 형상 변화에 따른 표면 가스온도 분포 해석 (Numerical Study of Turbine Blade Surface Gas Temperature with Various RPM and Blade Edge Shape)

  • 이인철;변용우;구자예;이상도;김귀순;문인상;이수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.49-52
    • /
    • 2008
  • 터빈 블레이드의 엣지 형상 변화에 따른 표면 가스온도 발달과정에 대해서 전산해석을 수행하였다. Sharp형과 Round형의 터빈 블레이드를 모델링하였으며, 터빈의 회전수는 두 가지 형상 모두 0${\sim}$10,000 rpm의 회전 속도를 주어 전산해석을 실시하였다. 터빈의 회전수가 증가할수록 터빈 블레이드 표면의 평균 온도는 하강하였고, Sharp형 엣지 형상이 Round형 엣지 형상에 비해서 터빈 블레이드의 표면 온도 분포가 전반적으로 낮은 분포를 나타내었다.

  • PDF

가스터빈 날개의 냉각에 대한 연구동향 (A Review of the Study on a Blade Cooling for the Gas Turbine)

  • 장태현;길상철;조홍곤
    • 한국산업융합학회 논문집
    • /
    • 제11권2호
    • /
    • pp.65-70
    • /
    • 2008
  • This study presents gas turbine cooling blade by using experimental and numerical works. The review cover researches related to cooling channels using finite element method in rotating blade. Also, the film cooling device and the heat transfer of the external surface of the blade are included. In addition, several methods to be used for the design of the blade, numerical method and experimental techniques are introduced. This work will contribute to improving the manufacturing of engine and the efficiency of gas turbine engines.

  • PDF

Sand particle-Induced deterioration of thermal barrier coatings on gas turbine blades

  • Murugan, Muthuvel;Ghoshal, Anindya;Walock, Michael J.;Barnett, Blake B.;Pepi, Marc S.;Kerner, Kevin A.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권1호
    • /
    • pp.37-52
    • /
    • 2017
  • Gas turbines operating in dusty or sandy environment polluted with micron-sized solid particles are highly prone to blade surface erosion damage in compressor stages and molten sand attack in the hot-sections of turbine stages. Commercial/Military fixed-wing aircraft engines and helicopter engines often have to operate over sandy terrains in the middle eastern countries or in volcanic zones; on the other hand gas turbines in marine applications are subjected to salt spray, while the coal-burning industrial power generation turbines are subjected to fly-ash. The presence of solid particles in the working fluid medium has an adverse effect on the durability of these engines as well as performance. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The focus of this research work is to simulate particle-surface kinetic interaction on typical turbomachinery material targets using non-linear dynamic impact analysis. The objective of this research is to understand the interfacial kinetic behaviors that can provide insights into the physics of particle interactions and to enable leap ahead technologies in material choices and to develop sand-phobic thermal barrier coatings for turbine blades. This paper outlines the research efforts at the U.S Army Research Laboratory to come up with novel turbine blade multifunctional protective coatings that are sand-phobic, sand impact wear resistant, as well as have very low thermal conductivity for improved performance of future gas turbine engines. The research scope includes development of protective coatings for both nickel-based super alloys and ceramic matrix composites.

파이로 시동기의 고온 가스에 의한 터빈 블레이드의 표면 가스온도 발달과정 해석 (Surface Gas Temperature of Turbine Blade by Hot Gas Stream of Pyro Starter in Operation Condition)

  • 이인철;김진홍;구자예;이상도;김귀순;문인상;이수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.63-67
    • /
    • 2007
  • The high pressure turbopump carries out supplying the oxidizer in the liquid propulsion rocket in the combustion chamber. Because an LRE requires a very short starting time , the turbine at the turbopump experiences high torque that was produced by the high pressure and the high temperature. The purpose of this study is to evaluate a turbine blade surface temperature profiles at initial starting 0 ${\sim}$ 0.5 sec. Using $Fine^{Tm}$/turbo, three dimensional Baldwin-Lomax turbulence models are used for numerically analysis. The turbine is composed of 108 blades total, but only 7 rotors were considered because of periodic symmetry effect. Because of interaction with a bow shock on the suction surface, the boundary layer separates from suction surface at inner area of turbine blade. The averaged temperature of the turbine blade tip at 1000 rpm is higher than that of 9000 rpm. Especially at 1000 ${\sim}$ 9000 rpm, temperatures increases on the hub side of the turbine blade tip. Moreover at 9000 rpm, the temperatures from the hub to the shroud of the blade tip increase as well.

  • PDF

가스 터빈 블레이드 팁과 그 주변에서의 열전달 계수 (Heat Transfer Coefficients on a Gas Turbine Blade Tip and Near Tip Regions)

  • 곽재수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.430-435
    • /
    • 2003
  • Detailed heat transfer coefficient distributions on a gas turbine blade tip were measured using a hue-detection base transient liquid crystals technique. The heat transfer coefficients on the shroud and near tip regions of the pressure and suction sides of a blade were also measured. Both plane tip and squealer tip blade were considered. The heat transfer measurements were taken at the three different tip gap clearance of 1.0%, 1.5%, and 2.5% of blade span. Results show the overall heat transfer coefficients on the tip and shroud with squealer tip blade were lower than those with plane tip blade. However, the reductions of heat transfer coefficients near the tip regions of the pressure and suction sides were not remarkable.

  • PDF

100 MW급 가스터빈 1단 블레이드의 피로파괴 발생 원인 (Cause of Fatigue Failure of the First Blade of 100-MW Gas Turbine)

  • 윤희철;우창기
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.632-638
    • /
    • 2015
  • Many failures have been reported in gas turbine facilities owing to repeated startups and prolonged use of the turbines. In this study, the causes and mechanism of fatigue failure in the first blade of a gas turbine were analyzed using a finite element method to calculate the centrifugal force, bending force, and a modal analysis based on the stress-stiffening effect and harmonic response under the operating conditions. The results show that, fatigue damage was caused by the resonance conditions encountered, in which the first natural frequency declined along with an increase in the metal temperature of the blade. The position of the expected fatigue damage was shown to match the actual position of the cracking at the root area of the blade, which was on the concave side. In addition, the equivalence fatigue stress was observed to approach the fatigue limit.