• Title/Summary/Keyword: gas production

Search Result 2,707, Processing Time 0.028 seconds

Dynamic modeling of LD converter processes

  • Yun, Sang Yeop;Jung, Ho Chul;Lee, In-Beum;Chang, Kun Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1639-1645
    • /
    • 1991
  • Because of the important role LD converters play in the production of high quality steel, various dynamic models have been attempted in the past by many researchers not only to understand the complex chemical reactions that take place in the converter process but also to assist the converter operation itself using computers. And yet no single dynamic model was found to be completely satisfactory because of the complexity involved with the process. The process indeed involves dynamic energy and mass balances at high temperatures accompanied by complex chemical reactions and transport phenomena in the molten state. In the present study, a mathematical model describing the dynamic behavior of LD converter process has been developed. The dynamic model describes the time behavior of the temperature and the concentrations of chemical species in the hot metal bath and slag. The analysis was greatly facilitated by dividing the entire process into three zones according to the physical boundaries and reaction mechanisms. These three zones were hot metal (zone 1), slag (zone 2) and emulsion (zone 3) zones. The removal rate of Si, C, Mn and P and the rate of Fe oxidation in the hot metal bath, and the change of composition in the slag were obtained as functions of time, operating conditions and kinetic parameters. The temperature behavior in the metal bath and the slag was also obtained by considering the heat transfer between the mixing and the slag zones and the heat generated from chemical reactions involving oxygen blowing. To identify the unknown parameters in the equations and simulate the dynamic model, Hooke and Jeeves parttern search and Runge-Kutta integration algorithm were used. By testing and fitting the model with the data obtained from the operation of POSCO #2 steelmaking plant, the dynamic model was able to predict the characteristics of the main components in the LD converter. It was possible to predict the optimum CO gas recovery by computer simulation

  • PDF

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.

Properties of the Flowability and Strength of Cementless Alkali-Activated Mortar Using the Mixed Fly Ash and Ground Granulated Blast-Furnace Slag (플라이애쉬와 고로슬래그 미분말의 혼합 사용한 무시멘트 알칼리 활성 모르터의 유동성 및 강도 특성)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.114-121
    • /
    • 2010
  • Portland cement production is under critical review due to high amount of CO2 gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. However, most study deal only with alkali-activated ground granulated blast furnace slag or fly ash, as for the combined use of the both, little information is reported. In this study, we investigated the influence of mixture ratio of fly ash/ blast furnace slag tand curing condition on the flowability and compressive strength of mortar in oder to develop cementless alkali-activated concrete. In view of the results, we found out that the mixture ratio of fly ash/blast furnace slag always results to be significant factors. But the influence of curing temperature in the strength development of mortar is lower than the contribution due to other factors. At the age of 28days, the mixture 50% fly ash and 50% ground granulated blast furnace slag activated with 1:1 the mass ratio of 9M NaOH and sodium silicate, develop compressive strength of about 65 MPa under $20^{\circ}C$ curing.

  • PDF

Methane and Nitrous Oxide Emissions from Livestock Agriculture in 16 Local Administrative Districts of Korea

  • Ji, Eun-Sook;Park, Kyu-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1768-1774
    • /
    • 2012
  • This study was conducted to evaluate methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from livestock agriculture in 16 local administrative districts of Korea from 1990 to 2030. National Inventory Report used 3 yr averaged livestock population but this study used 1 yr livestock population to find yearly emission fluctuations. Extrapolation of the livestock population from 1990 to 2009 was used to forecast future livestock population from 2010 to 2030. Past (yr 1990 to 2009) and forecasted (yr 2010 to 2030) averaged enteric $CH_4$ emissions and $CH_4$ and $N_2O$ emissions from manure treatment were estimated. In the section of enteric fermentation, forecasted average $CH_4$ emissions from 16 local administrative districts were estimated to increase by 4%-114% compared to that of the past except for Daejeon (-63%), Seoul (-36%) and Gyeonggi (-7%). As for manure treatment, forecasted average $CH_4$ emissions from the 16 local administrative districts were estimated to increase by 3%-124% compared to past average except for Daejeon (-77%), Busan (-60%), Gwangju (-48%) and Seoul (-8%). For manure treatment, forecasted average $N_2O$ emissions from the 16 local administrative districts were estimated to increase by 10%-153% compared to past average $CH_4$ emissions except for Daejeon (-60%), Seoul (-4.0%), and Gwangju (-0.2%). With the carbon dioxide equivalent emissions ($CO_2$-Eq), forecasted average $CO_2$-Eq from the 16 local administrative districts were estimated to increase by 31%-120% compared to past average $CH_4$ emissions except Daejeon (-65%), Seoul (-24%), Busan (-18%), Gwangju (-8%) and Gyeonggi (-1%). The decreased $CO_2$-Eq from 5 local administrative districts was only 34 kt, which was insignificantly small compared to increase of 2,809 kt from other 11 local administrative districts. Annual growth rates of enteric $CH_4$ emissions, $CH_4$ and $N_2O$ emissions from manure management in Korea from 1990 to 2009 were 1.7%, 2.6%, and 3.2%, respectively. The annual growth rate of total $CO_2$-Eq was 2.2%. Efforts by the local administrative offices to improve the accuracy of activity data are essential to improve GHG inventories. Direct measurements of GHG emissions from enteric fermentation and manure treatment systems will further enhance the accuracy of the GHG data.

The Effect of Body Energy Reserve Mobilization on the Fatty Acid Profile of Milk in High-yielding Cows

  • Nogalski, Zenon;Wronski, Marek;Sobczuk-Szul, Monika;Mochol, Magdalena;Pogorzelska, Paulina
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1712-1720
    • /
    • 2012
  • We investigated the effect of the amount of body condition loss in the dry period and early lactation in 42 high-yielding Holstein-Friesian cows on milk yield and the share of fatty acids in milk fat. Energy reserves were estimated based on the body condition scoring (BCS) and backfat thickness (BFT). Milk yield and milk composition were determined over 305-d lactation. From d 6 to 60 of lactation, the concentrations of 43 fatty acids in milk fat were determined by gas chromatography. Cows were categorized based on body condition loss from the beginning of the dry period to the lowest point of the BCS curve in early lactation into three groups: low condition loss group (L) ${\leq}0.5$ points (n = 14); moderate condition loss group (M) 0.75 to 1.0 points (n = 16) and high condition loss group (H) >1.0 points (n = 12). Cows whose body energy reserves were mobilized at 0.8 BCS and 11 mm BFT, produced 12,987 kg ECM over 305-d lactation, i.e. 1,429 kg ECM more than cows whose BCS and BFT decreased by 0.3 and 5 mm, respectively. In group H, milk yield reached 12,818 kg ECM at body fat reserve mobilization of 1.3 BCS and 17 mm BFT. High mobilization of body fat reserves led to a significant (approx. 5%) increase in the concentrations of monounsaturated fatty acids-MUFA (mostly $C_{18:1}$ cis-9, followed by $C_{18:1}$ trans-11), a significant decrease in the levels of fatty acids adversely affecting human health, and a drop in the content of linoleic acid, arachidonic acid and docosahexaenoic acid in milk fat. In successive weeks of lactation, an improved energy balance contributed to a decrease in the concentrations of unsaturated fatty acids (UFA) and an increase in the conjugated linoleic acid (CLA) content of milk fat.

Effects of Anti-Microbial Materials on Storages of Low Salted Doenjang (항균물질을 첨가한 저식염 된장의 저장성)

  • Kim, Jeong-Rye;Kim, Yon-Kyung;Kim, Dong-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1864-1871
    • /
    • 2013
  • The effect of additives on the quality of low salted doenjang was investigated during storage. Amylase activity gradually decreased during storage and protease activity decreased after four weeks. The number of yeast was lower in the mustard or ethanol added groups without a difference in bacterial count. The L- and b-values decreased gradually during storage with lower total color difference (${\Delta}E$) in garlic added doenjang. Gas production was reduced in the ethanol or mustard added groups. Titratable acidity and acid values were low in the ethanol and ethanol-garlic added ones. A reducing sugar content was higher in the groups with added additives. Ethanol decreased to the largest extent in mustard added doenjang. Amino-type nitrogen decreased in ethanol added doenjang, whereas ammonia-type nitrogen was low in the ethanol or mustard added groups. The taste, flavor, and overall acceptability of doenjang were significantly higher in the ethanol or garlic added groups than in the other groups.

Emission Reduction Characteristics of Three-way Catalyst with Engine Operating Condition Change in an Ultra-lean Gasoline Direct Injection Engine (초희박 직접분사식 가솔린 엔진용 삼원촉매의 운전조건에 따른 배기저감 특성)

  • Park, Cheol Woong;Lee, Sun Youp;Yi, Ui Hyung;Lee, Jang Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.727-734
    • /
    • 2015
  • Recently, because of the increased oil prices globally, there have been studies investigating the improvement of fuel-conversion efficiency in internal combustion engines. The improvements realized in thermal efficiency using lean combustion are essential because they enable us to realize higher thermal efficiency in gasoline engines because lean combustion leads to an increase in the heat-capacity ratio and a reduction of the combustion temperature. Gasoline direct injection (GDI) engines enable lean combustion by injecting fuel directly into the cylinder and controlling the combustion parameters precisely. However, the extension of the flammability limit and the stabilization of lean combustion are required for the commercialization of GDI engines. The reduction characteristics of three-way catalysts (TWC) for lean combustion engines are somewhat limited owing to the high excess air ratio and low exhaust gas temperature. Therefore, in the present study, we assess the reaction of exhaust gases and their production in terms of the development of efficient TWCs for lean-burn GDI engines at 2000 rpm / BMEP 2 bar operating conditions, which are frequently used when evaluating the fuel consumption in passenger vehicles. At the lean-combustion operating point, $NO_2$ was produced during combustion and the ratio of $NO_2$ increased, while that of $N_2O$ decreased as the excess air ratio increased.

Experimental study on the characteristics of Vacuum residue gasification in an entrained-flow gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.171-184
    • /
    • 2002
  • Approx. 200,000 bpd vacuum residue oil is produced from oil refineries in Korea. These are supplying to use asphalt, high sulfur fuel oil, and upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435-500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER(Korea Institute of Energy Research) are studing on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature : 1,100~1,25$0^{\circ}C$, reaction pressure : 1~6kg/$\textrm{cm}^2$G, oxygen/V.R ratio : 0.8~0.9 and steam/V.R ratio : 0.4-0.5. Experimental results show the syngas composition(CO+H$_2$) : 85~93%, syngas flow rate : 50~110Mm$^3$/hr, heating value : 2,300~3,000 ㎉/Nm$^3$, carbon conversion : 65~92, cold gas efficiency : 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.

  • PDF

Growth and Anaerobic Glycolysis in Barley Seeding in Response to Acute Hypoxia (단기 혐기조건에 대한 보리 유묘의 생육과 혐기대사 과정의 반응 특성)

  • Choi Heh Ran;Lim Jeong Hyun;Kim Jung Gon;Choi Kyeong-Gu;Yun Song Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.6
    • /
    • pp.522-527
    • /
    • 2004
  • Barley growing in paddy fields often suffers from wet-injury due to oxygen deficiency in rhizospere caused by excessive water in the soil. This study was conducted to investigate responsiveness of growth, development and anaerobic glycolysis enzymes to acute hypoxia in barley seedlings. Barley seedlings at the third leaf stage were subjected to hypoxia (1 ppm dissolved oxygen) by sparging the culture solution with nitrogen gas for up to seven days. Length and fresh weights of the shoot and root were affected little by hypoxia for up to 5 days. But root dry weight was slightly decreased by hypoxia for 7 days. In the root, alcohol dehydrogenase and lactate dehydrogenase activities increased drastically under hypoxia, reaching at their maximum levels in 3 to 5 days of hypoxia and decreasing slightly thereafter. However, the activities of both enzymes changed little in the shoot. Increases of their activities in the root were contributed by all the isozymes found in barley. These results suggest that barley seedlings first adapt to hypoxia by rapidly activating fermentative glycolysis to stabilize cellular pH and to increase energy production for the following morphological adaptative changes.

An Air Cleaning Efficiencies of Wet Air Cleaner in the Swine Finishing Winch Curtain Stall (윈치커튼식 비육돈사에서 습식공기정화기의 공기정화 효율 분석)

  • Oh, I.H.;Kim, W.G.;Lee, H.S.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.75-80
    • /
    • 2008
  • High concentration of $NH_3$, $CO_2$, and lots of dust are found in modern densely raising stall system, as results, they provide a negative influence on animal and lamer health, and production ability. Therefore, it is necessary to keep clean the inside of stall air to increase the productivity. A wet type air cleaner has been developed to clean the stall air. The work principle is that the inside air are sucked through the fan, and the rotating discs make a water into a fineness spray and blows into the stall. The spray can take the dust, $NH_3$, and odor from the stall inside air and give back to the circulating water, which can be refreshed in 2 hours interval. In the Present study, we measured the $NH_3$, dust, odor, temperature and humidity in a swine stall that were installed two wet air cleaners with 700 fattening swine with on-mode and off-mode of wet air cleaners. In fall, the concentrations of $NH_3$ in off-mode stall were maximum 24 ppm and minimum 16 prm, and the average was 18.2 ppm. However in on-mode stall the $NH_3$ concentrations were maximum 7ppm and minimum 1ppm, and the average was 2.7ppm. The concentration of $NH_3$ in on-mode was 74% lower than off-mode stall. Odor was measured by olfactometer. In the off-mode stall, the odor unit was 3,800 OU/$m^3$, but in the on-mode stall the odor unit was 2,100 OU/$m^3$ Odor removal efficiency was about 45% in on-mode stall. The dust measure was divided into 3 categories, $PM_{10}$, $PM_{2.5}$ and $PM_{1.0}$. Whereas the $PM_{10}$ showed no significant differences between the tests, $PM_{2.5}$ and $PM_{1.0}$ in the fine particle range reduced remarkably in the on-mode.

  • PDF