Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12279

The Effect of Body Energy Reserve Mobilization on the Fatty Acid Profile of Milk in High-yielding Cows  

Nogalski, Zenon (University of Warmia and Mazury in Olsztyn, Department of Cattle Breeding and Milk Quality Evaluation)
Wronski, Marek (University of Warmia and Mazury in Olsztyn, Department of Cattle Breeding and Milk Quality Evaluation)
Sobczuk-Szul, Monika (University of Warmia and Mazury in Olsztyn, Department of Cattle Breeding and Milk Quality Evaluation)
Mochol, Magdalena (University of Warmia and Mazury in Olsztyn, Department of Cattle Breeding and Milk Quality Evaluation)
Pogorzelska, Paulina (University of Warmia and Mazury in Olsztyn, Department of Cattle Breeding and Milk Quality Evaluation)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.12, 2012 , pp. 1712-1720 More about this Journal
Abstract
We investigated the effect of the amount of body condition loss in the dry period and early lactation in 42 high-yielding Holstein-Friesian cows on milk yield and the share of fatty acids in milk fat. Energy reserves were estimated based on the body condition scoring (BCS) and backfat thickness (BFT). Milk yield and milk composition were determined over 305-d lactation. From d 6 to 60 of lactation, the concentrations of 43 fatty acids in milk fat were determined by gas chromatography. Cows were categorized based on body condition loss from the beginning of the dry period to the lowest point of the BCS curve in early lactation into three groups: low condition loss group (L) ${\leq}0.5$ points (n = 14); moderate condition loss group (M) 0.75 to 1.0 points (n = 16) and high condition loss group (H) >1.0 points (n = 12). Cows whose body energy reserves were mobilized at 0.8 BCS and 11 mm BFT, produced 12,987 kg ECM over 305-d lactation, i.e. 1,429 kg ECM more than cows whose BCS and BFT decreased by 0.3 and 5 mm, respectively. In group H, milk yield reached 12,818 kg ECM at body fat reserve mobilization of 1.3 BCS and 17 mm BFT. High mobilization of body fat reserves led to a significant (approx. 5%) increase in the concentrations of monounsaturated fatty acids-MUFA (mostly $C_{18:1}$ cis-9, followed by $C_{18:1}$ trans-11), a significant decrease in the levels of fatty acids adversely affecting human health, and a drop in the content of linoleic acid, arachidonic acid and docosahexaenoic acid in milk fat. In successive weeks of lactation, an improved energy balance contributed to a decrease in the concentrations of unsaturated fatty acids (UFA) and an increase in the conjugated linoleic acid (CLA) content of milk fat.
Keywords
Dairy Cows; Body Condition Loss; Backfat Thickness; Oleic Acid; CLA;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ayres, H., R. M. Ferreira, J. R. de Souza Torres-Junior, C. G. B. Demetrio, C. G. de Lima and P. S. Baruselli. 2009. Validation of body condition score as a predictor of subcutaneous fat in Nelore (Bos indicus) cows. Livest. Sci. 123:175-179.   DOI   ScienceOn
2 AOAC. 1990. Official methods of analysis of the Associated Official Analytical Chemists, Chepter 32, Washington, DC, USA.
3 Berry, D. P., F. Buckley and P. Diplom. 2007. Body condition score and live weight effects on milk production in Irish Holstein-Friesian dairy cows. Animal 1:1351-1359.
4 Drackley, J. K. 1999. Biology of dairy cows during the transition period: the final frontier? J. Dairy Sci. 82: 2259-2273.   DOI   ScienceOn
5 Gross, J., H. A. van Dorland, R. M. Bruckmaier and F. J. Schwarz. 2011. Milk fatty acid profile related to energy balance in dairy cows. J. Dairy Res. 78:479-488.   DOI   ScienceOn
6 Grummer, R. R., D. G. Mashek and A. Hayirli. 2004. Dry matter intake and energy balance in the transition period. Veterinary Clinics of North America-Food Animal Practice 20:447-470.   DOI   ScienceOn
7 Ingvartsen, K. L. 2006. Feeding- and management-related disease in the transition cow: Physiological adaptation around calving and strategies to reduce feeding-related diseases. Anim. Feed Sci. Technol. 126:175-213.   DOI   ScienceOn
8 Khanal, R. C. and T. R. Dhiman. 2007. Status of milk fat conjugated linoleic acid (CLA) in selected commercial dairies. Asian-Aust. J. Anim. Sci. 20:1525-1538.   과학기술학회마을   DOI
9 Nalecz-Tarwacka, T. 2006. Effect of selected factors on the functional component content of milk fat in dairy cows. Treatises and Monographs, Publications of Warsaw Agricultural University, p. 108.
10 Nogalski, Z. and E. Gorak. 2008. Effects of the body condition of heifers at calving and at the first stage of lactation on milk performance. Med. Weter. 64:322-326.
11 Palmquist, D. L., A. D. Beaulieu and A. D. Barbano. 1993. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 76:1753-1771.   DOI   ScienceOn
12 Reklewska, B., A. Oprzadek, Z. Reklewski, L. Panicke, B. Kuczynska and J. Oprzadek. 2002. Alternative for modifying the fatty acid composition and decreasing the cholesterol level in the milk of cows. Livest. Prod. Sci. 76:135-243.
13 Roche, J. R., N. C. Friggens, J. K. Kay, M. W. Fisher, K. J. Stafford and D. P. Berry. 2009. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 92:5769-5801.   DOI   ScienceOn
14 Rukkwamsuk, T., M. J. H. Geelen, T. A. M. Kruip and T. Wensing. 2000. Interrelation of fatty acid composition in adipose tissue, serum, and liver of dairy cows during the development of fatty liver postpartum. J. Dairy Sci. 83:52-59.   DOI   ScienceOn
15 Santschi, D. E., D. M. Lefebvre, R. I. Cue, C. L. Girard and D. Pellerin. 2011. Incidence of metabolic disorders and reproductive performance following a short (35-d) or conventional (60-d) dry period management in commercial Holstein herds. J. Dairy Sci. 94:3322-3330.   DOI   ScienceOn
16 Stoop, W. M., H. Bovenhuis and J. M. L. Heck. 2009. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 92:1469-1478.   DOI   ScienceOn
17 Schroeder, G. F., J. E. Delahoy, I. Vidaurreta, F. Bargo, G. A. Gagliostro and L. D. Muller. 2003. Milk fatty acid composition of cows fed a total mixed ration or pasture plus concentrates replacing corn with fat. J. Dairy Sci. 86:3237-3248.   DOI   ScienceOn
18 Schroeder, U. J. and R. Staufenbiel. 2006. Invited review: Methods to determine body fat reserves in the dairy cow with special regard to ultrasonographic measurement of backfat thickness. J. Dairy Sci. 89:1-14.   DOI   ScienceOn
19 Sjaunja, L. O., B. Baevre, L. Junkkarinen, J. Pedersen and J. Setala. 1990. A Nordic proposal for an energy corrected milk (ECM) formula. Proc. 27th Session of the ICRPMA, Paris, July 2-6, 156-157.
20 Sumner, J. M. and J. P. McNamara. 2007. Expression of lipolytic genes in the adipose tissue of pregnant and lactating Holstein dairy cattle. J. Dairy Sci. 90:5237-5246.   DOI   ScienceOn
21 Van Haelst, Y. N. T., A. Beeckman, A. T. M. van Knegsel and V. Fievez. 2008. Short communication: Elevated concentrations of oleic acid and long-chain fatty acids in milk fat of multiparous subclinical ketotic cows. J. Dairy Sci. 91:4683-4686.   DOI   ScienceOn
22 Van Knegsel, A. T. M., H. van den Brand, H. J. Dijkstra, S. Tamminga and B. Kemp. 2005. Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle. Reprod. Nutr. Dev. 45:665-688.   DOI   ScienceOn
23 Wildman, E. E., G. M. Jones, P. E. Wagner, R. L. Boman, H. F. Troutt and T. N. Lesch. 1982. A dairy cow body condition scoring system and its relationship to selected production characteristics. J. Dairy Sci. 65:495-501.   DOI