• Title/Summary/Keyword: gas pipes

Search Result 274, Processing Time 0.023 seconds

A Study on Standards for Pressure Relief Valve Vent Pipes from LPG Storage Tanks (LPG용 압력방출밸브 방출관 설치기준 개선방안)

  • Lee, Jin-Han;Eom, Suk-Hwa;Kim, Lae-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.59-64
    • /
    • 2012
  • The dispersion of gas discharged from the vent pipes of pressure relief valves attached LPG (Liquefied Petroleum Gas) storage tank was studied. In general, vent pipes should be positioned so that they discharge vertically upwards in a safe place, and installed so that, in the event of ignition of discharged gas, flame impingement on any vessel, equipment or piping is avoided[1][2]. In Korea, on the other hand, there are various type of the end of vent pipes because there is no rule for discharge directions from the vent pipes. In this paper, we took 4 types of vent directions from the pipes in to account, such as vertically upward, vertically downward, vertically 4-way and horizontally 2-way direction. A software package, FLACS, was adopted to simulate gas dispersion from the vent pipes. We found that vertically downward, vertically 4-way and horizontally 2-way discharge from vent pipes were undesirable to avoid ignition on near ground. Therefore, it was obvious that vertically upward opening of a vent pipe is the best option to discharge in a safe place.

Prediction of Life of Heat Pipes by Measuring Temperature Distribution (온도측정에 의한 히트파이프의 수명예측)

  • Shin, Hung Tae;Polasek, Frantisek;Lee, Yoon Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.856-863
    • /
    • 1999
  • The thermal performance degradation of heat pipes is caused by the non-condensable gas generation mainly due to the electrochemical corrosion which results from the reaction of working fluids with tube materials. In this study, a simplified method described below was proposed to estimate the life of heat pipes concerning the non-condensable gas generation. The temperature distributions at the outer surface of heat pipes was measured, and based on them the amount of non-condensable gas of hydrogen was estimated. Applying it to the Arrhenius model, the mass generation of hydrogen and the volume occupied by the gas In heat pipes could be estimated for an operating temperature and time. Moreover, this simplified method was applied to the accelerated life test of nine methanol-stainless steel heat pipe samples.

Seismic Impact Analysis of Buried Citygas Pipes through Structural Analysis (구조해석을 통한 도시가스 매설배관의 지진 영향 분석)

  • Yoon Ho Jo;Maria Choi;Ju An Yang;Sang Il Jeon;Ji Hoon Jeon
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2023
  • Earthquakes are one of the most important disasters affecting underground structures. Urban gas underground pipes may cause safety problems of structures in the event of an earthquake. Since Korea began digital observation, the number of earthquakes has been steadily increasing. The seismic design standard for urban gas pipes was established in 2008, but it is difficult to estimate the impact of pipes in the event of an earthquake based on the installation of pipes. In this study, structural analysis was performed on PE (polyethylene pipe) pipes and PLP (polyethylene coated steel pipe) pipes, which are mainly used as buried pipes in Korea, according to environmental and pipe variables in the event of an earthquake. This study sought to find the variables of the most vulnerable buried pipe by modeling pipes through Computer Aided Engineering (CAE) and generating displacement on the ground. Through this study, it was confirmed that the larger the elastic modulus of the soil, the deeper the buried depth, the smaller the tube diameter, and the higher the pressure, the more PLP pipes are affected by earthquakes than PE. Based on these results, the vulnerable points of buried urban gas pipes are inferred and used for special inspections of buried pipes in the event of an earthquake.

Buried Polyethylene Gas Pipes Analysis using Finite Element Method under External Loadings (외부 하중에 대한 매설 폴리에틸렌 가스배관의 유한요소 해석)

  • Kil, Seong-Hee;Jo, Do-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.49-55
    • /
    • 2007
  • Polyethylene pipes have been widely used as they are easy to construct and suitable for economical efficient when they are compared with metal pipelines. This paper studies the effect of various external loadings on stress and deflection of the buried PE pipes using Finite Element Method(FEM). For this purpose, stresses of buried PE pipes are calculated according to the loading condition such as pipe types (pipe diameter $50{\sim}400mm$), burial depths ($0.6{\sim}1.2m$) and internal pressures ($0.4{\sim}4bar$). As a result, it is founded the effect and relation with each of loading conditions under the buried condition.

  • PDF

Analysis of the Propagation Characteristics of Ultrasonic Guided Waves Excited by Single Frequency and Broadband Sources

  • Kang, To;Song, Sung-Jin;Kim, Hak-Joon;Cho, Young-Do;Lee, Dong-Hoon;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.570-578
    • /
    • 2009
  • Excitation and propagation of guided waves are very complex problems in pipes due to their dispersive nature. Pipes are commonly used in the oil, chemical or nuclear industry and hence must be inspected regularly to ensure continued safe operation. The normal mode expansion(NME) method is given for the amplitude with which any propagating waveguide mode is generated in the pipes by applied surface tractions. Numerical results are calculated based on the NME method using different sources, i.e., non-axisymmetric partial loading and quasi-axisymmetric loading sources. The sum of amplitude coefficients for 0~nineth order of the harmonic modes are calculated based on the NME method and the dispersion curves in pipes. The superimposed total field which is namely the angular profile, varies with propagating distance and circumferential angle. This angular profile of guided waves provides information for setting the transducer position to find defects in pipes.

A Numerical Study on Refrigerant Distribution according to the Insertion Depth of the Distributor-Outlet Pipes in an Air-Conditioning System (공조 시스템 내의 분배기 출구관의 삽입깊이에 따른 유량분포연구)

  • Lee, Hee Won;Park, Il Seouk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.491-496
    • /
    • 2015
  • Generally, the phase of the refrigerants that circulate in air-conditioning systems is repeatedly changed from liquid to gas and from gas to liquid. In vapor-compression refrigeration, the refrigerant at the inlet of the evaporator is in a gas-liquid two-phase state; therefore, to enhance the heat-transfer performance of the evaporator, the even distribution of the refrigerant across multiple passages of the evaporator is essential. Unlike the distribution of a single-phase refrigerant, multi-phase distribution requires further considerations. It is known that the multi-phase distribution at the outlet of the distributor is affected by factors such as the operating condition, the distributor's shape, and the insertion depth of the outlet pipes; here, the insertion depth of the outlet pipes is especially significant. In this study, for a cylindrical distributor with a 90-degree bend entrance and three outlet pipes, the flow uniformity at the outlet pipes was numerically tested in relation to variations of the insertion depth of the outlet pipes.

A Study on the Chilling Start-up Characteristics and Performance of a Gas Loaded Heat Pipe (가스내장 히트파이프의 냉시동특성과 성능에 관한 연구)

  • Hong, Sung-Eun;Kang, Hwan-Kook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.915-922
    • /
    • 2006
  • Considering heat pipe design principles in fabrication and operational performances, water is one of the most recommended working fluids to make mid to low tempera lure heat pipes. But the conventional water heat pipes might encounter the failure in a cold start-up operation when socked at a chilling temperature lower than the freezing point. If they are subjected to a heat supply for start-up at a temperature around $-20^{\circ}C$, the rate of the vapor flow and the corresponding heat transfer from the evaporator to the condenser is so small that the vapor keeps to stick on the surface of the chilling condenser wall, forming an ice layer, resulting in a liquid deficiency in the evaporator. This kind of problems was resolved by Kang et al. in 2004 by adopting a gas loading heat pipe technology to the conventional water heat pipes. This study was conducted to examine a chilling start-up procedure of gas loading heat pipes by investigating the behaviors of heat pipe wall temperatures. And the thermal resistance of the gas loaded heat pipe that depends on the operating temperatures and heat loads was measured and examined. Two water heat pipes were designed and fabricated for the comparison of performances, one conventional and the other loaded with $N_2$ gas. They were put on start-up test at a heat supply of 30 W after having been socked at an initial temperature around $-20^{\circ}C$. It was observed that the gas loaded one had succeeded in chilling start-up operation.

Non-Destructive Testing of Damaged Thermoplastic Pipes Electrofusion Joints Using Phased Array Ultrasonic (위상배열초음파를 이용한 손상된 열가소성 플라스틱배관 전기융착부 비파괴검사)

  • Kil, Seong-Hee;Kim, Byung-Duk;Kwon, Jeong-Rock;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.64-68
    • /
    • 2013
  • Non destructive testing(NDT) methods of electrofusion(EF) joints of thermoplastics pipes are required for fusion joint safety and for the long term reliability of a pipe system. Electrofusion joints, which are joined at the proper fusion process and procedures, may encounter defects due to the difference of ovality between pipes and coupling, improper fusion process or porosity result from electrofusion joining. These defects can cause the failure of pipeline and by extension, they can be caused the limit to expand the use of plastics pipes. This paper studies inspection results using ultrasonic imaging method for damaged polyethylene electrofusion joints. Gas was leaking from 250mm diameter polyethylene electrofusion joints at February 2004 which was electrofused at December 1994 and operation pressure was 2.45kPa. First, surface inspection was conducted and then in order to find the types of defects examination using ultrasonic imaging method was performed. Lack of fusion and inappropriate inserting for polyethylene pipes into electrofusion coupling were found and causes of the gas leak were judged that misalignment and insert defect. Cutting inspection was performed and each inspection results were compared to. Results of ultrasonic imaging method and cutting inspection were the same.

Detection of Abnormal Signals in Gas Pipes Using Neural Networks

  • Min, Hwang-Ki;Park, Cheol-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.669-670
    • /
    • 2008
  • In this paper, we present a real-time system to detect abnormal events on gas pipes, based on the signals which are observed through the audio sensors attached on them. First, features are extracted from these signals so that they are robust to noise and invariant to the distance between a sensor and a spot at which an abnormal event like an attack on the gas pipes occurs. Then, a classifier is constructed to detect abnormal events using neural networks. It is a combination of two neural network models, a Gaussian mixture model and a multi-layer perceptron, for the reduction of miss and false alarms. The former works for miss alarm prevention and the latter for false alarm prevention. The experimental result with real data from the actual gas system shows that the proposed system is effective in detecting the dangerous events in real-time with an accuracy of 92.9%.

  • PDF

Analysis of the Critical Path of Underground Gas Pipe According to Interference Behavior (간섭 거동에 따른 지하 가스 배관의 영향선 분석)

  • Kim, Mi-Seung;Won, Jong-Hwa;Kim, Moon-Kyum;Kim, Tae-Min;Choi, Sun-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.2
    • /
    • pp.7-13
    • /
    • 2009
  • In order to make the critical path analysis of gas pipeline located under rigid pipes for interference behavior, FE analysis is performed considering real buried conditions of a drain and a gas pipe according to intersection angle of two pipes. A drain pipe and gas pipe have cover depth respectively 1.0m and 3.39m and this study considers a interference angle in the range of $0{\sim}90^{\circ}$. In this paper, the critical path is analyzed from the result of Ring Deflection and bending stress according to intersection angle. In the event intersection angle of two pipes equal to the critical path of lower pipe. The analysis results show that the critical path of lower gas pipe according to interference behavior has relation to intersection angle of two pipes.

  • PDF