• Title/Summary/Keyword: gas phase reaction

Search Result 454, Processing Time 0.034 seconds

Synthesis of amorphous calcium carbonate by gas-liquid reaction and its crystallization

  • Ahn Ji-Whan;Kim Hyung-Seok;Park Jin-Koo;Kim Ka-Yeon;Yim Going;Joo Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.654-657
    • /
    • 2003
  • We obtained amorphous calcium carbonate through the carbonation reaction of $Ca(OH)_2$, and through this reaction, observed changes in particle shape and phase by electric conductivity, XRD and TEM analysis. According to the result of the analysis, in the first declining stage of electric conductivity, amorphous calcium carbonate that has formed is coated on the surface of $Ca(OH)_2$ and obstructs its dissolution, and in the first recovery stage of electric conductivity, amorphous calcium carbonate is dissolved and re-precipitated and forms chains of fine calcite particles linearly joined. In the second decline of conductivity, viscosity increases due to the growth of chains of calcite particles, and finally the calcite particles are dissolved and separated into colloidal crystalline calcite, thereby increasing electric conductivity again.

  • PDF

Numerical Investigation for Combustion Characteristics of Vacuum Residue in a Test Furnace

  • Sreedhara, S.;Huh, Kang-Y.;Park, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.121-127
    • /
    • 2006
  • It has become inevitable to search for alternative fuels due to severe energy crisis these days. Use of alternative fuels, which are typically of lower quality, tends to increase environmental pollution, including formation of nitrogen oxides (NOx). In this paper performance of vacuum residue has been investigated experimentally as well as numerically in typical operating conditions of a furnace. Heat release reaction is modeled as sequential steps of devolatilization, simplified gas phase reaction and char oxidation as that for pulverized coal. Thermal and fuel NOx are predicted by conditional estimation of elementary reaction rates and are compared against measured experimental data. On the overall reasonable agreement is achieved for spatial distributions of major species, temperature and NOx for all test cases.

  • PDF

Volatiles from the Maillard Reaction of L-Ascorbic Acid and L-Alanine at Different pHs

  • Yu, Ai-Nong;Deng, Qi-Hui
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1495-1499
    • /
    • 2009
  • The volatiles formed from the reactions of L-ascorbic acid with L-alanine at 5 different pH (5, 6, 7, 8, or 9) and $140{\pm}2^{\circ}C$ for 2 hr was performed using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis were identified to be 25 different kinds. The reaction between L-ascorbic acid and L-alanine led mainly to the formation of pyrazines. Many of these were alkylpyrazines, such as 3-ethyl-2,5-dimethylpyrazine, 2,5-dimethylpyrazine, 2-ethyl-5-methylpyrazine, 3,5-diethyl-2-methylpyrazine, methylpyrazine, 2-ethyl-6-methylpyrazine, and 2,3-diethyl-5-methylpyrazine, other compounds identified were furans, phenols, benzoquinones, 2,4,6-trimethylpyridine, and 2-methylbenzoxazole. The studies showed that furans, such as furfural and benzofuran were formed mainly at acidic pH. In contrast, higher pH values could promote the production of pyrazines.

CRDS Study of Tropospheric Ozone Production Kinetics : Isoprene Oxidation by Hydroxyl Radical

  • Park, Ji-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.532-537
    • /
    • 2009
  • The tropospheric ozone production mechanism for the gas phase additive oxidation reaction of hydroxyl radical (OH) with isoprene (2-methyl-1,3-butadiene) has been studied using cavity ring-down spectroscopy (CRDS) at total pressure of 50 Torr and 298 K. The applicability of CRDS was confirmed by monitoring the shorter (~4%) ringdown time in the presence of hydroxyl radical than the ring-down time without the photolysis of hydrogen peroxide. The reaction rate constant, $(9.8{\pm}0.1){\times}10^{-11}molecule^{-1}cm^3s^{-1}$, for the addition of OH to isoprene is in good agreement with previous studies. In the presence of $O_2$ and NO, hydroxyl radical cycling has been monitored and the simulation using the recommended elementary reaction rate constants as the basis to OH cycling curve gives reasonable fit to the data.

A Functional Representation of the Potential Energy Surface of Non-Identical $S_N2$ Reaction: F- … $CH_3Cl \rightarrow FCH_3$ … Cl-

  • 김정섭;김영훈;노경태;이종명
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1073-1079
    • /
    • 1998
  • The potential energy surface (PES) of the non-identical SN2 reactions, F- + CH3Cl → FCH3 + Cl and (H2O)F + CH3Cl → FCH3 + Cl-(H2O), were investigated with ab initio MO calculations. The ab initio minimum energy reaction path (MERP) of the F- + CH3Cl → FCH3 + Cl- was obtained and it was expressed with an intermediate variable t. The ab initio PES was obtained near around t. Analytical potential energy function (PEF) was determined as a function of the t in order to reproduce the ab initio PES. Based on Morse-type potential energy function, a Varying Repulsive Cores Model (VRCM) was proposed for the description of the bond forming and the bond breaking which occur simultaneously during the SN2 reaction. The MERP calculated with the PEF is well agreed with the ab initio MERP and PEF could reproduce the ab initio PES well. The potential parameters for the interactions between the gas phase molecules in the reactions and water were also obtained. ST2 type model was used for the water.

A Generator of Gaseous Singlet Oxygen

  • Matsuura, Teruo;Sato, Hideya;Suzuki, Nobutaka;Matsumoto, Masakatsu
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.409-411
    • /
    • 2002
  • In order to prevent side reactions due to free radical formation occurring in the reactions of singlet oxygen generated in solution phse, it was required that singlet oxygen is generated in gas phase from an apparatus of a solid-gas system. We have accomplished to construct an apparatus generating singlet oxygen in solid-gas system, which is composed of a flexible optical fibre tube connected by a dye-sensitizer probe containing rose bengal dye on polymer or inorganic material. Through the optical fibre tube visible light from a laser and an oxygen stream are passed into the sensitizer probe where singlet oxygen is generated. The determination of singlet oxygen was carried out by two methods. One involves the detection of the luminescence of singlet oxygen at 1268 mn and the other involves the chemiluminescence reaction of a dihydroisobenzofuran with singlet oxygen emitting luminescence at 456 nm.

  • PDF

Activity of $V_2O_5-WO_3/TiO_2$-based SCR Catalyst for the Oxidation of Gas-phase Elemental Mercury ($V_2O_5-WO_3/TiO_2$ 계 SCR 촉매의 가스상 원소수은 산화 활성)

  • Hong, Hyun-Jo;Ham, Sung-Won
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.370-378
    • /
    • 2011
  • Catalytic activity of $V_2O_5-WO_3/TiO_2$-based SCR catalyst was examined for the oxidation of gas-phase elemental mercury to oxidized mercury. Mercury species was not detected on the commercial SCR catalyst after the oxidation reaction of elemental mercury, regadless of the presence of HCl acting as oxidant and the reaction conditions. This suggests that elemental mercury oxidation by HCl could occur via a Eley-Rideal mechanism with gas phase or weakly-bound mercury on the surface of $V_2O_5-WO_3/TiO_2$ SCR catalyst. The activity for mercury oxidation was significantly increased with the increase of $V_2O_5$ loading, which indicates that $V_2O_5$ is the active site. However, turnover frequency for mercury oxidation was decreased with the increase of $V_2O_5$ loading, indicating the activity for mercury oxidation was strongly dependent on the surface structure of vanadia species. The activity for oxidation of elemental mercury under SCR condition was much less than that under oxidation condition at the same HCl concentration and reaction temperature.

Optical Diagnostics of Nanopowder Processed in Liquid Plasmas

  • Bratescu, M.A.;Saito, N.;Takai, O.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.17-18
    • /
    • 2011
  • Plasma in liquid phase has attracted great attention in the last few years by the wide domain of applications in material processing, decomposition of organic and inorganic chemical compounds and sterilization of water. The plasma in liquid is characterized by three main regions which interact each - other during the plasma operation: the liquid phase, which supply the plasma gas phase with various chemical compounds and ions, the plasma in the gas phase at atmospheric pressure and the interface between these two regions. The most complex region, but extremely interesting from the fundamental, chemical and physical processes which occur here, is the boundary between the liquid phase and the plasma gas phase. In our laboratory, plasma in liquid which behaves as a glow discharge type, is generated by using a bipolar pulsed power supply, with variable pulse width, in the range of 0.5~10 ${\mu}s$ and 10 to 30 kHz repetition rate. Plasma in water and other different solutions was characterized by electrical and optical measurements. Strong emissions of OH and H radicals dominate the optical spectra. Generally water with 500 ${\mu}S/cm$ conductivity has a breakdown voltage around 2 kV, depending on the pulse width and the repetition rate of the power supply. The characteristics of the plasma initiated in ultrapure water between pairs of different materials used for electrodes (W and Ta) were investigated by the time-resolved optical emission and the broad-band absorption spectroscopy. The deexcitation processes of the reactive species formed in the water plasma depend on the electrode material, but have been independent on the polarity of the applied voltage pulses. Recently, Coherent anti-Stokes Raman Spectroscopy method was employed to investigate the chemistry in the liquid phase and at the interface between the gas and the liquid phases of the solution plasma system. The use of the solution plasma allows rapid fabrication of the metal nanoparticles without being necessary the addition of different reducing agents, because plasma in the liquid phase provides a reaction field with a highly excited energy radicals. We successfully synthesized gold nanoparticles using a glow discharge in aqueous solution. Nanoparticles with an average size of less than 10 nm were obtained using chlorauric acid solutions as the metal source. Carbon/Pt hybrid nanostructures have been obtained by treating carbon balls, synthesized in a CVD chamber, with hexachloro- platinum acid in a solution plasma system. The solution plasma was successfully used to remove the template remained after the mesoporous silica synthesis. Surface functionalization of the carbon structures and the silica surface with different chemical groups and nanoparticles, was also performed by processing these materials in the liquid plasma.

  • PDF

Deposition Behaviors of Ti-Si-N Thin Films by RF Plasma-Enhanced Chemical Vapor Deposition. (RF-PECVD법에 의한 Ti-Si-N 박막의 증착거동)

  • 이응안;이윤복;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.4
    • /
    • pp.211-217
    • /
    • 2002
  • Ti-Si-N films were deposited onto WC-Co substrate by a RF-PECVD technique. The deposition behaviors of Ti-Si-N films were investigated by varying the deposition temperature, RF power, and reaction gas ratio (Mx). Ti-Si-N films deposited at 500, 180W, and Mx 60% had a maximum hardness value of 38GPa. The microstructure of films with a maximum hardness was revealed to be a nanocomposite of TiN crystallites penetrated by amorphous silicon nitride phase by HRTEM analyses. The microstructure of maximum hardness with Si content (10 at.%) was revealed to be a nanocomposite of TiN crystallites penetrated by amorphous silicon nitride phase, but to have partly aligned structure of TiN and some inhomogeniety in distribution. and At above 10 at.% Si content, TiN crystallite became finer and more isotropic also thickness of amorphous silicon nitride phase increased at microstructure.

Production of Nanosized WC Powder by Vapor Phase Reaction

  • Cho, Gi-Chul;Lee, Gil-Geun;Ha, Gook-Hyun;Kim, Byung-Kee
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.625-626
    • /
    • 2006
  • In the present study, the focus is on the synthesis of nanosized WC powder by the chemical vapor condensation proces. The synthesized W-C system powder by the CVC process shows W2C, W, WO3 phases and can not shows WC phase. After recarburization heat treatment under mixture gas atmosphere of argon and hydrogen gases, the synthesized W-C system powder fully transformed to the pure WC. The synthesized WC powder after recarburization heat treatment has an average particle size of 20 nm. The nano-sized WC powder can be prepared by the combination of the CVC process and heat treatment methods.

  • PDF