DOI QR코드

DOI QR Code

CRDS Study of Tropospheric Ozone Production Kinetics : Isoprene Oxidation by Hydroxyl Radical

  • Park, Ji-Ho (Department of Environmental Health, Korean National Open University)
  • Received : 2009.11.04
  • Accepted : 2009.12.05
  • Published : 2009.12.31

Abstract

The tropospheric ozone production mechanism for the gas phase additive oxidation reaction of hydroxyl radical (OH) with isoprene (2-methyl-1,3-butadiene) has been studied using cavity ring-down spectroscopy (CRDS) at total pressure of 50 Torr and 298 K. The applicability of CRDS was confirmed by monitoring the shorter (~4%) ringdown time in the presence of hydroxyl radical than the ring-down time without the photolysis of hydrogen peroxide. The reaction rate constant, $(9.8{\pm}0.1){\times}10^{-11}molecule^{-1}cm^3s^{-1}$, for the addition of OH to isoprene is in good agreement with previous studies. In the presence of $O_2$ and NO, hydroxyl radical cycling has been monitored and the simulation using the recommended elementary reaction rate constants as the basis to OH cycling curve gives reasonable fit to the data.

Keywords

References

  1. Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D. R., Rasmussen, R. A., Zimmerman, P., Greenberg, J., Middleton, P., Wang, T. : Ozone precursor relationships in the ambient atmosphere. Journal of Geophyscal Research, 97, 6037-6055, 1992 https://doi.org/10.1029/91JD03014
  2. Rasmussen, R. A., Khalil, M. A. : Isoprene over the amazon basin. Journal of Geophyscal Research, 93, 1417-1421, 1988 https://doi.org/10.1029/JD093iD02p01417
  3. Atmospheric Chemistry and Global Change: Brasseur, G. P., Orlando, J. J., Tyndall, G. S., New York Oxford, Oxford University Press, 1999
  4. Fenger, J. : Urban air quality. Atmospheric Environment, 33, 4877-4900, 1999 https://doi.org/10.1016/S1352-2310(99)00290-3
  5. Jenkin, M. E., Hayman, G. D. : Kinetics of reactions of primary, secondary and tertiary betahydroxy peroxyl radicals-Application to isoprene degradation. Journal of the Chemical Society-Faraday Transactions, 91, 1911-1922, 1995 https://doi.org/10.1039/ft9959101911
  6. Atkinson, R., Aschmann, S. M., Tuazon, E. C., Arey, J., Zielinska, B. : Formation of 3-methylfuran from the gas phase reaction of OH radicals with isoprene and the rate constant for its reaction with OH radical. International Journal of Chemical Kinetics, 21, 593-604, 1989 https://doi.org/10.1002/kin.550210709
  7. Paulson, S. E., Seinfeld, J. H. : Development and evaluation of photooxidation mechanism for isoprene. Journal of Geophyscal Research, 97, 20703-20715, 1992 https://doi.org/10.1029/92JD01914
  8. Francisco-Marquez, M., Alvarez-Idaboy, J. R., Galano, A., Vivier-Bunge, A. : Theoretical study of the initial reaction between OH and isoprene in tropospheric conditions. Physical Chemistry Chemical Physics, 5, 1392-1399, 2003 https://doi.org/10.1039/b211185c
  9. McGivern, W. S., Suh, I. S., Clinkenbeard, A. D., Zhang, R., North, S. W. : Experimental and computational study of the OH-isoprene reaction: Isomeric branching and low-pressure behavior. Journal of Physical Chemistry A, 104, 6609-6016, 2000 https://doi.org/10.1021/jp001163c
  10. Zhang, R. Y., Suh, I., Lei, W., Clinkenbeard, A. D., North, S. W. : Kinetic studies of OH-initiated reactions of isoprene. Journal of Geophyscal Research-Atmospheres, 105, 24627-24635, 2000 https://doi.org/10.1029/2000JD900330
  11. Stevens, P. S., Seymour, E., Li, Z. J. : Theoretical and experimental studies of the reaction of OH with isoprene. Journal of Physical Chemistry A, 104, 5989-5997, 2000 https://doi.org/10.1021/jp993612i
  12. Lei, W. F., Zhang, R. Y. : Theoretical study of hydroxyisoprene alkoxy radicals and their decomposition pathways. Journal of Physical Chemistry A, 106, 3808-3815, 2001 https://doi.org/10.1021/jp0041353
  13. Kleindienst, T. E., Harris, G. W., Pitts, J. N. : Rates and temperature dependences of the reaction of OH with isoprene, its oxidation-products, and selected terpenes. Environmental Science & Technology, 16, 844-846, 1982 https://doi.org/10.1021/es00106a004
  14. Chuong, B., Stevens, P. S. : Kinetic study of the OH plus isoprene and OH plus ethylene reactions between 2 and 6 torr and over the temperature range 300-423 K. Journal of Physical Chemistry A, 104, 5230-5237, 2000 https://doi.org/10.1021/jp993613a
  15. Iida, Y., Obi, K., Imamura, T. : Rate constant for the reaction of OH radicals with isoprene at 298 ± 2K. Chemistry Letters, 8, 792-793, 2002
  16. Lei, W. F., Zhang, R., McGivern, W. S., Derecskei-Kovacs, A., North, S. : Theoretical study of OH-O2-isoprene peroxy radicals. Journal of Physical Chemistry A, 105, 471-477, 2001 https://doi.org/10.1021/jp0027039
  17. Park, J., Jongsma, G., Zhang, R., North, S. : OH/OD Initiated oxidation of isoprene in the presence of O$_{2}$ and NO. Journal of Physical Chemistry A, 108, 10688-10697, 2004 https://doi.org/10.1021/jp040421t
  18. Zhang, D., Zhang, R., Church, C., North, S. : Theoretical study of OH-O$_{2}$-isoprene peroxy radicals. Chemical Physcs Letter A, 343, 49-54, 2001 https://doi.org/10.1016/S0009-2614(01)00654-6
  19. Zhang, D., Suh, I., Clinkenbeard, A., Lei, W., North, S. : Kinetic studies of OH-initiated reactions of isoprene. Journal of Geophyscal Research-Amospheres, 105, 24627-24635, 2000 https://doi.org/10.1029/2000JD900330
  20. O'Keefe, A., Deacon, D. A. : Cavity ring-down optical spectrometer for absorption measurements using pused laser sources. Review of Scientific Instruments, 59, 2544-2551, 1988 https://doi.org/10.1063/1.1139895
  21. Pushkarsky, M. B., Zalyubovsky, S. J., Miller, T. A. : Detection and characterization of alkyl peroxy radicals using cavity ringdown spectroscopy. Journal of Chemical Physics, 112, 10695-10698, 2000 https://doi.org/10.1063/1.481705
  22. Rupper, P., Sharp, E. N., Tarczay, G., Miller, T. A. : Investigation of ethyl peroxy radical conformers via cavity ringdown spectroscopy of the electronic transition. Journal of Physical Chemistry A, 111, 832-840, 2007 https://doi.org/10.1021/jp066464m
  23. Liu, Y. D., Morales-Cueto, R., Hargrove, J., Medina, D., Zhang, J. S. : Measurements of peroxy radicals using chemical amplification-cavity ringdown spectroscopy. Environmental Science & Technology, 43, 7791-7796, 2009 https://doi.org/10.1021/es901146t
  24. Choi, Y. M., Xia, W. S., Park, J., Lin, M. C. : Kinetics and mechanism for the reaction of phenyl radical with formaldehyde. Journal of Physical Chemistry A, 104, 7030-7035, 2000 https://doi.org/10.1021/jp000780y
  25. Park, J., Tokmakov, I. V., Lin, M. C. : Experimental and computational studies of the phenyl radical reaction with Allene. Journal of Physical Chemistry A, 111, 6881-6889, 2007 https://doi.org/10.1021/jp0708502
  26. Atkinson, D. B., Hudgens, J. W. : Chemical kinetic studies using ultraviolet cavity ring-down spectroscopic detection: Self-reaction of ethyl and ethylperoxy radicals and the reaction O$_{2}$+C$_{2}$H$_{5}$->C$_{2}$H$_{5}$O$_{2}$. Journal of Physical Chemistry A, 101, 3901-3909, 1997 https://doi.org/10.1021/jp970240+
  27. Atkinson, D. B., Hudgens, J. W., Orr-Ewing, A. J. : Kinetic studies of the reactions of IO radicals determined by cavity ring-down spectroscopy. Journal of Physical Chemistry A, 103, 6173-6180, 1999 https://doi.org/10.1021/jp9902497
  28. Atkinson, D. B., Hudgens, J. W. : Chlorination chemistry. 2. Rate coefficients, reaction mechanism, and spectrum of the chlorine adduct of allene. Journal of Physical Chemistry A, 104, 811-818, 2000 https://doi.org/10.1021/jp9927247
  29. Summary of Evaluated Kinetic and Phtochemical Data for Atmospheric Chemistry. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry : Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F. Jr., Kerr, J. A., Rossi, M. J., Troe, J., London, Blackwell, 2002
  30. Chen, X. H., Hulbert, D., Shepson, P. B. : Measurement of the organic nitrate yield from OH reaction with isoprene. Journal of Geophyscal Research-tmospheres, 109, 25563-25568, 1998
  31. Wallington, T. J., Dagaut, P., Kurylo, M. J. : Ultraviolet absorption cross sections and reaction kinetics and mechanisms for peroxy radicals in the gas phase. Chemical Review, 92, 667-710, 1992 https://doi.org/10.1021/cr00012a008