• Title/Summary/Keyword: gas measurement

Search Result 1,922, Processing Time 0.027 seconds

A Study for Measurements of In-Cylinder Residual Gas Fraction using Fast Response FID in an SI Engine (스파크점화기관에서 고속응답 FID를 이용한 실린더내 잔류가스량 측정에 관한 연구)

  • 송해박;조한승;이종화;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.80-89
    • /
    • 1998
  • The residual gas in an spark-ignition engine is one of important factors on emissions and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and these are deeply related with combustion stability especially at idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. In the present study, the quantitative measurement technique of residual gas fraction was studied by using Fast Response Flame Ionization Detector(FRFID). The measuring technique and model for estimation of residual gas fraction were reported in this paper. By the assuming that the raw signal from FRFID saturates with the same slope for firing and misfiring cycle, in-cylinder hydrocarbon(HC) concentration can be estimated. Residual gas fraction can be obtained from the in-cylinder HC concentration measured at firing and motoring condition. The developed measurement and calibration procedure were applied to the limited engine operating and design condition such as intake manifold pressure and valve overlap. The results show relevant trends by comparing those from previous studies.

  • PDF

A study on the development of gas measurement system in shoes mold and automatic gas-vent exchange machine with computer vision (신발금형의 가스 배출량 측정 장치와 영상정보를 이용한 가스벤트 자동 교환 시스템의 개발)

  • Kwon, Jang-Woo;Hong, Jun-Eui;Yoon, Dong-Eop;Choi, Heung-Ho;Kil, Gyung-Suk
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.20-27
    • /
    • 2006
  • This paper presents a gas measurement system for deciding hole positions on a PU middle-sole mold from computed gas amount. The optimal number of holes and their positions on the shoe mold are decided from statistical experiment results to overcome the problem of excessive expenses in gas vent exchange. This paper also describes a gas vent exchange mechanism using computer vision system. The gas hole detecting process is based on computer vision algorithms represented as a simple Pattern Matching. The experimental result showed us that the system was useful to calculate the number of holes and their positions on the shoes mold.

Investigation on the Practical Use of Gas Hydrate in Gas Industry (가스하이드레이트 산업시스템 실용화 현황 및 동향 분석)

  • Gwon, Ok-Bae;Sin, Chang-Hun;Park, Seung-Su;Han, Jeong-Min;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.415-418
    • /
    • 2006
  • In Japan, research and development were undertaken on gas hydrate-side industrial processes associated with power generation system connections that may particularly be necessary to develop gas hydrated technology-based industrial systems. In so doing, data and engineering technologies useful n formulating guidelines on design of practical process were accumulated. In addition, basic research into theoretical evidence were carried out to promote and support the development of technological elements for those processes. In basic research designed to promote and support the research and development of elemental technologies microanalyses were conducted to understand the decomposition mechanism of mixed gas hydrate. Moreover, measurement technologies that can be applied in industrial processes, such as numerical analyses and concentration ion measurement, were examined. Japan has developed a highly efficient gas hydrate formation process using micro-bubbles with a tubular reactor. Higher formation rate over conventional systems has been obtained by the process. As mentioned above, the technical problems were clarified and the economics were studied from a view point of the NGH technology in this study. The results can be applied for utilization and must contribute to popularization of gas hydrate production.

  • PDF

A Study on the Discrepancies of Gas Measurement and the Solution Measures between Suppliers and Consumers in South Korea (도시(都市)가스 계량(計量) 편차(偏差) 및 해소방안(解消方案)에 관(關)한 소고(小考))

  • Park, Sang-Chul;Bang, Sun-Hyuk
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.26-34
    • /
    • 2010
  • KOGAS, established in 1983 by law to ensure stable gas supply to the public, is responsible for the wholesale distribution to 30 city gas companies that deal with the retail distribution of natural gas in their geographic areas. The gas imported by KOGAS is measured by checking the level difference of LNG shipped in tankers before and after unloading. The analysis of gas composition is essential because the imported gas price is determined by its calorific value. The turbine meter is widely used for measuring the gas sold to city gas companies. Unlike the metering system for power plants, there is no gas chromatograph since the custody transfer of gas to the city gas companies is not billed by calorific value, but by volume basis. The gas quantity that a city gas company has bought from KOGAS is not equal to the quantity that the company sold to its customers. There have been some discrepancies between the wholesale gas meter readouts and retail ones due to some inherent errors of meters and some operational issues of the meters. This paper investigates the controversies regarding the real quantity of gas between distributors and consumers. It will discus and suggest desirable policies, both technically and economically, in order to solve the discrepancies of gas measurement.

A Case Study on the Risk Analysis for the Installation of Measurement Error Verification Facility in Hydrogen Refueling Station (수소 충전소 계량오차 검증 설비 설치를 위한 위험성 분석 사례 연구)

  • Hwayoung, Lee;Hyeonwoo, Jang;Minkyung, Lee;Jeonghwan, Kim;Jaehun, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.30-36
    • /
    • 2022
  • In commercial transactions of energy sources using hydrogen charging stations, high-accuracy flow meters are needed to prevent accidents such as overcharging due to inaccurate measurements and to ensure transparency in hydrogen commercial transactions through accurate measurements. This research developed a Corioli-type flowmeter prototype and conducted a risk assessment to prevent accidents during a process change comparison experiment for existing charging stations to verify the measurement performance. A process change section was defined for the installation of measurement facilities for empirical experiments and HAZOP was conducted. In addition, JSA was also conducted to secure the safety of experimenters, such as preventing valve mis-opening during empirical experiments. Measures were established to improve the risk factors derived through HAZOP, and work procedures were established to minimize human errors and ensure the safety of workers through JSA. The design change and system manufacturing for the installation of the metering system were completed by reflecting the risk assessment results, and safety could be confirmed through the performance comparison test of the developed meter prototype. The developed prototype flow meter showed a total of 30 flow measurements under the operating conditions of 70 MPa, and the average error was -1.58% to 3.96%. Such a metering error was analyzed to have the same performance as a flow meter installed and operated for commercial use.

Calculation of the Hydrocarbon and Water Dew points of Natural Gas (천연가스의 탄화수소 및 물 이슬점 계산)

  • Ha, Youngcheol;Lee, Seongmin;Her, Jaeyoung;Lee, Kangjin;Lee, Seunjun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.565-571
    • /
    • 2009
  • This study was conducted to evaluate hydrocarbon and water dew points of natural gas. For this purpose, algorithm of suppressing divergence was devised to evaluate hydrocarbon dew point up to near critical point and algorithm for finding water dew points lower than that of hydrocarbon, which cannot be calculated by commercial dew point program, was developed. The evaluated values were compared to commercial program and ISO reference values, and the results showed that deviations were zero.

A Study on Transient Injection Rate Measurement of Gas Fuels Using Force Sensor (힘센서를 이용한 기상 연료의 과도적 분사율 계측에 관한 연구)

  • Jaehyun, Lee;Gyuhan, Bae;Youngmin, Ki;Seoksu, Moon
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.181-187
    • /
    • 2022
  • For carbon neutrality, direct-injection hydrogen engines are attracting attention as a future power source. It is essential to estimate the transient injection rate of hydrogen for the optimization of hydrogen injection in direct injection engines. However, conventional injection rate measurement techniques for liquid fuels based on the injection-induced fuel pressure change in a test section are difficult to be applied to gaseous fuels due to the compressibility of the gas and the sealing issue of the components. In this study, a momentum flux measurement technique is introduced to obtain the transient injection rate of gaseous fuels using a force sensor. The injection rate calculation models associated with the momentum flux measurement technique are presented first. Then, the volumetric injection rates are estimated based on the momentum flux data and the calculation models and compared with those measured by a volumetric flow rate meter. The results showed that the momentum flux measurement can detect the injection start and end timings and the transient and steady regimes of the fuel injection. However, the estimated volumetric injection rates showed a large difference from the measured injection rates. An alternative method is suggested that corrects the estimated injection rate results based on the measured mean volumetric flow rates.

Analytical method for analyzing formaldehyde using 2, 4-DNPH and gas chromatography/FID, NPD (2,4-DNPH와 가스크로마토그래프를 이용한 포름알데히드 분석방법)

  • Jeong, Jee Yeon;Park, Seung Hyun;Yi, Gwang Yong;Oh, Se Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.1
    • /
    • pp.126-146
    • /
    • 2000
  • To develop and evaluate formaldehyde measurement method using 2,4-dinitro-phenylhydrazine (2,4-DNPH) coated sampler and gas chromatography, laboratory test and field test were conducted. Results of this study are as follows. Limit of detection(LOD) of measurement methods, HPLC-UVD, GC-NPD and GC-FID, is $0.008{\mu}g/m{\ell}$ $0.060{\mu}g/m{\ell}$, $0.472{\mu}g/m{\ell}$ respectively. Coefficiency of measurement methods, HPLC-UVD, GC-NPD and GC-FID, is 0.008, 0.009, 0.020 respectively. Desorption efficiency of sep-pak xposure aldehyde sampler and sorbent sample tube is 1.05(range : 0.99 - 1.12), 1.02(range : 0.99 - 1.06) respectively. Samples of sorbent sample tube and sep-pak xposure aldehyde sampler turned out to be stored at refrigerator, according to storage test results. Measurement methods of HPLC-UVD, GC-NPD, GC-FID, according to results of precision for the combined sampling and analytical procedure, became acceptable to OSHA evaluation standard. Field test using exposure chamber met the NIOSH overall uncertainty recommendation(less than 25%). Overall uncertainty of Sepak-HPLC(UVD), Tube-GC(NPD), Tube-GC(FID) is 11.0% - 17.0%. Consequently gas chromatography(GC-NPD, GC-FID) and high performance liquid chromatography(EPA TO-11) using 2,4-DNPH coated sampler for formaldehyde measurement turned out to be suitable to measure personal formaldehyde exposure at workplaces.

  • PDF

Measurement of Transient Electric Field Emission from a 245 kV Gas Insulated Substation Model during Switching

  • Rao, M. Mohana;Thomas, M. Joy;Singh, B.P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.306-311
    • /
    • 2007
  • The transient fields generated during switching operations in a Gas Insulated Substation (GIS) are associated with high frequency components in the order of few tens of MHz. These transient fields leak into the external environment of the gas-insulated equipment and can interfere with the nearby electronics. Measurements of the transient fields are thus required to characterise the interference caused by switching phenomena in such substations. In view of the above, E-field emission measurement during a switching operation has been carried out for a 245 kV GIS model, using a resonant dipole antenna and D-dot sensor. The characteristics of the E-fields i.e., frequency spectra and their levels have been analysed and are reported in the paper. Suitability of the measurements has been confirmed by comparing frequency spectra of the measured and computed transient fields.

Diode-Laser Absorption Sensors for measurement of combustion Gas (연소배기 가스의 계측을 위한 다이오드 레이저 센서)

  • Shin, Myung-Chul;Kim, Se-Won;Kim, Dong-Hyuck
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.3
    • /
    • pp.26-35
    • /
    • 2006
  • This work forcus on the development of gas sensor that measure the concentrations of exhaust gas using diode laser, Each diode laser for exhaust gas measurement is set to work at near-IR using both DA and WMS methods. Also use of fiber-coupled optical elements makes such a sensor rugged and easy to align. The results showed that gas concentrations of $O_2$, CO, $CO_2$, NO are accurately measured within ${\pm}2%$ error. The application of WMS method increased the beam intensity 2-3 times higher than DA method. It were experimentally compared WMS (Wavelength Modulation Spectroscopy) with DA (Direct Absorption) for the accuracy.

  • PDF