• Title/Summary/Keyword: gas laser

Search Result 717, Processing Time 0.024 seconds

Control of Size and Morphology of Particles Using CO2 Laser in a Flame (화염증 CO2 Laser를 이용한 입자의 크기 및 형상 제어)

  • Lee, Donggeun;Lee, Seonjae;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1379-1389
    • /
    • 1999
  • A new technique for control of size and shape of flame-made particles is Introduced. The characteristic sintering time can be controlled Independently of collision time by heating the particles with irradiation of laser because the sintering time strongly depends on temperature. A coflow oxy-hydrogen diffusion flame burner was used for $SiCl_4$ conversion to silica particle. Nanometer sized aggregates irradiated by a high power CW $CO_2$ laser beam were rapidly heated up to high temperatures and then were sintered to approach volume-equivalent spheres. The sphere collides much slower than the aggregate, which results in reduction of sizes of particles maintaining spherical shape. Light scattering of Ar ion laser and TEM observation using a local sampling device were used to confirm the above effects. When the $CO_2$ laser was irradiated at low position from the burner surface, particle generation due to gas absorption of laser beam occurred and thus scattering intensity increased with $CO_2$ laser power. At high irradiation position, scattering intensity decreased with $CO_2$ laser power and TEM image showed a clear mark of evaporation and recondensation of particles for high $CO_2$ laser power. When the laser was irradiated between the above two positions where small aggregates exist, average size of spherical particles obviously decreased to 58% of those without $CO_2$ laser irradiation with the spherical shape. Even for increased carrier gas flow rate by a factor of three, TEM photograph also revealed considerable reduction of particle size.

Quantitative Acetone PLIF Measurement of Fuel Distribution in a Gas Turbine Combustor Burner (아세톤 PLIF를 이용한 가스터빈 연소기 버너 출구 연료분포의 정량적 측정)

  • Jeon, Woo-Jin;Kim, Hyung-Mo;Lee, Kang-Yeop;Yang, Su-Seok
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.43-52
    • /
    • 2010
  • A non-intrusive measurement, Planar Laser Induced Fluorescence was employed to visualize and measure the fuel distribution of the non-reacting field at the burner exit of gas turbine combustor. Measurement techniques, image processing method and quantification procedure were presented. Also, concentration measurement with gas analyzer was carried out to verify the propriety of PLIF result. The PLIF result coincides well with gas analyzer measurement result. PLIF test result for several other conditions are mentioned as well.

Capacitively Coupled Radio Frequency Discharge System for Excitation of Gas Laser (기체레이저의 여기를 위한 용량결합고주파(ccrf) 방전시스템)

  • Choi, Sang-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • The ccrf-discharge has in comparison with the hollow-cathode discharge and DC-discharge some advantages: Simple design of the tube and homogeneous plasma. The ccrf-discharge was researched with the goal, to use on the excitation of the gas laser. In this work a rf-exciting system was planned and developed. With it a homogeneous discharge was produced in the cw operation. To supply the rf-power with the frequency 13.56[MHz] effectively in the discharge, laser tube were used with inner diameter of 5[mm] and the specially developed rf-electrodes. A matching circuit was composed also. Thereby the impedance of the discharge tube was adjusted to the 50[$\Omega$] output resistance of the rf-source.

Efficiency of Gas-Phase Ion Formation in Matrix-Assisted Laser Desorption Ionization with 2,5-Dihydroxybenzoic Acid as Matrix

  • Park, Kyung Man;Ahn, Sung Hee;Bae, Yong Jin;Kim, Myung Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.907-911
    • /
    • 2013
  • Numbers of matrix- and analyte-derived ions and their sum in matrix-assisted laser desorption ionization (MALDI) of a peptide were measured using 2,5-dihydroxybenzoic acid (DHB) as matrix. As for MALDI with ${\alpha}$-cyano-4-hydroxy cinnamic acid as matrix, the sum was independent of the peptide concentration in the solid sample, or was the same as that of pure DHB. This suggested that the matrix ion was the primary ion and that the peptide ion was generated by matrix-to-peptide proton transfer. Experimental ionization efficiencies of $10^{-5}-10^{-4}$ for peptides and $10^{-8}-10^{-7}$ for matrices are far smaller than $10^{-3}-10^{-1}$ for peptides and $10^{-5}-10^{-3}$ for matrices speculated by Hillenkamp and Karas. Number of gas-phase ions generated by MALDI was unaffected by laser wavelength or pulse energy. This suggests that the main role of photo-absorption in MALDI is not in generating ions via a multi-photon process but in ablating materials in a solid sample to the gas phase.

Operating Characteristics of a Waveguide $CO_2$ Laser Excited by 13.56MHz and Additional Xe Effect (13.56MHz로 여기되는 도파관 $CO_2$ 레이저의 동작특성 및 Xe 첨가효과)

  • 김영식;권혁상;신교철;백찬기;김윤명;박재환
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.234-238
    • /
    • 1992
  • A sealed-off waveguide $CO_2$ laser with a length of 50 cm and a cross-sectional area of $6\times 6\ttextrm{mm}^{2}$ has been designed and constructed. The laser is transversely excited by RF (13.56 MHz) discharge. Output characteristics of the laser has been investigated performing variations of total gas pressure, input rf power, and mixing ratios of gases. The maximum output power of 9.5 W was obtained under the condition of total gas pressure of 50 Torr, input rf power of 180 W, and gas mixture of 6 : 1 : 2 : 1 of $He:CO_{2}:N_{2}:Xe$.

  • PDF

Catalytic growth of single wall carbon nanotubes by laser vaporization and its purification and The carbon nanotube growth on the Si substrate by CVD method

  • Lee, Sung won;Jung in Sohn;Lee, Seonghoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.213-213
    • /
    • 2000
  • Direct laser vaporization of transition-metal(Co, Ni)/graphite composite pellet produced single wall carbon naotubes(SWNT) in the condensing vapor in a heated flow cylinder-type tube furnace, Transition metal/graphite composite pellet target was made by mixing graphite, Co, and Ni in 98:1:1 atomic weight ratios, pressing the mixed powder, and curing it. The target was placed in a tube furnace maintained at 1200$^{\circ}C$ and Ar inert collision gas continuously flowed into the tube. The 2nd harmonic, 532nm wavelength light from Nd-YAG laser was used to vaporize the tube. The carbon nanotubes produced by the laser vaporization were accumulated on quartz tube wall. The raw carbon nanotube materials were purified with surfactants(Triton X-100) in a ultrasonicator. These carbon nanotubes were analyzed using SEM, XRD, and Raman spectroscopic method. The carbon nanotube growth on the Ni-patterned Si substrate was investigated by the CVD process. Transition-metal, Ni and CH4 gas were used as a catalyst and a reactant gas, respectively. The structure and the phonon frequencies of the carbon nanotubes formed on the patterned Si substrate were measured by SEM and Raman spectrometer.

  • PDF

Analysis of single/poly crystalline Si etching characteristics using $Ar^+$ ion laser ($Ar^+$ ion laser를 이용한 단결정/다결정 Si 식각 특성 분석)

  • Lee, Hyun-Ki;Park, Jung-Ho;Lee, Cheon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1001-1003
    • /
    • 1998
  • In this paper, $Ar^+$ ion laser etching process of single/poly crystalline silicon with $CCl_{2}F_{2}$ gas is studied for MEMS applications. To investigate the effects of process parameters, laser power, gas pressure, scanning speed were varied and multiple scanning was carried out to obtain high aspect ratio. In addition, scanning width was varied to observe the trench profile etched in repeating scanning cycle. From the etching of $2.6{\mu}m$ thick polycrystalline Si deposited on insulator, trench with flat bottom and vertical side wall was obtained and it is possible to apply this results for MEMS applications.

  • PDF

Fabrication of various Si particle by Pulsed Laser Ablation (PLA법에 의한 Si 미립자 제작)

  • ;Mamoru Yoshimoto;Hideomi Koinuma
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.121-125
    • /
    • 2001
  • We study the feasibility of synthesizing Si particles using PLA method. In the previous studies, it was possible to control the size of Si nanoparticles bythe He gas pressure. In this study, we fabricated sub-micron size Si particles with various shapes such as conical, hexagonal, and ring by controlling not only the ambient as pressure but also the laser energy density. Furthermore, we found that the conical Si particles were uniform-sized and had step shape when observed from FE-SEM and AFM. The conical Si particle has the same crystal structure as the bulk single crystalline Si by the analysis of the Raman scattering. It is shown that the relationship between the laser energy density and the He gas pressure inside the chamber affects the shape of the Si particle.

  • PDF

Optical Gain Measuring System in the Laser Discharge using Feedback Light (귀환광을 이용한 레이저방전내의 광이득 측정시스템)

  • Choi, Sang-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.9-14
    • /
    • 2011
  • A spectroscopic measuring system was developed in order to determine optical gain of gas laser discharge for any optical transitions between 190[nm] and 800[nm] without laser resonator. With an image optical system and a feedback optical system emission light of laser discharge are entered in a monochromator and received at a photomultiplier. Subsequently optical gain and line intensity are measured.

Development of Methane Gas Leak Detector by Short Infrared Laser (단적외선 레이저를 이용한 메탄가스 누출 검지 장비 개발)

  • Young Sam Baek;Jung Wan Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2024
  • Due to the development of industry and improvement of living standards, the amount of natural gas used in the world is constantly increasing, and related industrial facilities such as power plants, storage facilities, and supply pipelines are constantly increasing. Natural gas is a convenient and clean fuel that does not pollute the environment, but in the event of an accident due to leakage, it can cause human casualties, large-scale property damage, and negative effects on the global warming effect. In addition to the severe penalties under the Severe Disaster Punishment Act, it is necessary to ensure safety. Therefore, by applying the principle of laser-based absorption spectroscopy, we developed a long-range portable methane leakage gas detection system that can detect the concentration of methane leaking from a distance of up to 30 meters and verified its effectiveness.