• Title/Summary/Keyword: gas generator

Search Result 757, Processing Time 0.032 seconds

Combustion Characteristics of a Gas Generator Associated with a Turbopump (터보펌프 연계상태의 가스발생기 연소 특성)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.133-136
    • /
    • 2008
  • The present study presents experimental results of combustion tests of a fuel-rich gas generator associated with a turbopump. Five combustion tests had been successfully executed. Static pressures of the gas generator promptly reacted to propellant supply variations from the turbopump. A closed-loop test for driving the turbopump revealed no flaw. Exit gas temperature results are very similar to previous ones. An orifice was effective on the suppression of pressure fluctuations although tests conducted below 45 bar showed the same dynamic behaviour as that of component-only tests.

  • PDF

Analysis of Insulation Diagnosis and Failure in Stator Windings of Air-Cooled Gas Turbine Generator

  • Kim, Hee-Dong;Kong, Tae-Sik;Kim, Kyeong-Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.421-424
    • /
    • 2016
  • In order to evaluate the insulation deterioration in the stator windings of air-cooled gas turbine generators(119.2 MVA, 13.8 kV) which has been operating for more than 15 years, diagnostic test and AC dielectric breakdown test were performed on phases A, B and C. Diagnostic test included measurements of AC current, dissipation factor, partial discharge (PD) magnitude and capacitance. ${\Delta}I$ and ${\Delta}tan{\delta}$ in all three phases (A, B, and C) of generator stator windings showed that they were in good condition but PD magnitude indicated marginally serviceable condition. After the diagnostic test, an AC overvoltage test was performed by gradually increasing the voltage applied to the generator stator windings until electrical insulation failure occurred, in order to determine the breakdown voltage. Although phase A of generator stator windings failed at breakdown voltage of 29.0 kV, phases B and C endured the 29.0 kV. The breakdown voltage in all three phases was higher than that expected for good-quality windings (28.6 kV) in a 13.8 kV class generator.

Assessment of Insulation Condition in Gas Turbine Generator Stator Windings (가스터빈 발전기 고정자 권선의 절연상태 평가)

  • Kim, Hee-Dong;Yang, Gyu-Hyun;Ju, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1423-1428
    • /
    • 2010
  • The results of off-line and on-line diagnostic tests performed on the stator winding of an air-cooled gas turbine(G/T) generator are reported in this paper. Off-line diagnostic tests included measurements of the ac current, dissipation factor(tan${\delta}$), and partial discharge(PD). Six epoxy-mica capacitors were installed in the three phases of G/T generator for performing on-line diagnostic testing with the turbine generator analyzer(TGA). The TGA showed that the normalized quantity number(NQN) and the PD magnitude($Q_m$) were high in phase A of the stator winding. Internal discharges were generated in phases B and C, and slot discharge occurred in phase A. According to the trend analyses of the NQN and $Q_m$ values available for insulation condition assessment for G/T generator stator windings, it was concluded that phases B and C were in good condition, whereas phase A has been significantly deteriorated.

A Study on Enthalpy Extraction Rate and Isentropic Efficiency of the Disk Type Generator using a Shock Tube (충격파관을 이용한 DISK형 MHD발전기의 엔탈피추출율과 단열효율에 관한 연구)

  • Bae, C.O.;Kim, Y.S.;Park, Y.S.;Shin, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1981-1983
    • /
    • 1998
  • The principle of the MHD generation is based on Faraday's law of induction that a eletromotive force(u ${\times}$ B) is generated when the working gas of velocity u flows a channel in which magnetic field of strength(B) exists. In MHD power generation system, enthalpy of the working gas is converted to electric power directly through expansion in generator channel. It means that electric power can be generated without moving mechanical linkage such as turbine blades. There are two types in the MHD generator; linear type Faraday and disk type hall generator. Disk type hall generator is the main target of this paper. Isentropic efficiency and enthalpy extraction rate of disk type shock tube driven hall generator is discussed here.

  • PDF

Certification Test Result of After-burner Test Facility for Gas-generator of 75 tonf Class Liquid Rocket Engine (75톤급 액체로켓엔진용 가스발생기 후연소 시험설비 인증시험 결과)

  • Kim, Chae-Hyoung;Lee, Kwang-Jin;Han, Yeoungmin;Chung, Yonggahp
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.91-97
    • /
    • 2015
  • After-burner test facility for gas generators of 75 tonf class liquid rocket engines was designed, which was verified by the facility certification test of the Combustion Chamber Test Facility(CCTF). The purpose of the certification test of the after-burner test facility is to verify the combustion stability of gas torches equipped in the gas generator and the after-burner test facility by using methane and oxygen gases. In the case of the autonomous test, the supply system provided steadily methane and oxygen gases to the after-burner system without pressure drop. The combustion pressure of the gas torch approached the design requirement. In the case of the coupled test, the gas generator ignition and the fuel-rich exhaust gas combustion were successfully carried out, leading to the verification of the test facility.

A evaluation of internal radial direction's distribution of MHD generator using shock tube (충격파관을 이용한 MHD발전기 내부 반경방향 분포의 평가)

  • 배철오;안병원;김윤식;이성근;박영산
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.493-503
    • /
    • 2000
  • There are two types of generators in the MHD generation : linear type Faraday and disk type hall generator. In this paper, it is experimented disk type hall generator. Disk type generator is driven by shock tube that compresses working gas isentropically in a very short time. As a working gas, helium gas seeded with cesium is used. it is difficult to confirm the whole condition thorough oかy experiment because the things happened in MHD generator is very complex. Furthermore we can't how exactly what happen at the inside of generator's channel because the time of generation is very short and working gas flows out very high speed. Expecially it is almost impossible to measure the things occurred in the boundary layer using MHD generation experimental equipment driven shock uk. With above reasons, to know certainly how the several values happened inside disk MHD generator charge, some graphs were drawn linearly through calculation using measured experimental data. For the more, other calculated results which can't be obtained by only experiment are considered in this paper. And these calculated results are compared to experiment data how exactly done the calculation.

  • PDF

Temperature Variation of Exhaust Gas in Diesel Generator for Low Pressure SCR (저압 SCR을 위한 디젤발전기 배기가스 온도 변화)

  • Hong, Chul Hyun;Lee, Chang Min;Lee, Sang Duk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.355-362
    • /
    • 2021
  • To facilitate low-pressure selective catalyst reduction (L.P SCR), a high exhaust-gas temperature of a four-stroke diesel engine for a ship's generator is required. This study aimed at reducing the exhaust-gas temperature by adjusting the valve open-close timing and fuel injection timing to satisfy the operating conditions of L.P SCR and prevent accidents associated with the generator engine due to high temperature. To lower exhaust-gas temperature, the angle of the camshaft was adjusted and the shim of the fuel injection pump was added. As a result, the maximum explosion pressure increased and the average of the turbocharger outlet temperature dropped. Considering the heat loss from the turbocharger outlet to the SCR inlet, the operation condition for L.P SCR was satisfied with 290 ℃. The study demonstrates that safe operation of a diesel generator can be achieved by lowering the exhaust-gas temperature.

Modification of an LPG Engine Generator for Biomass Syngas Application (바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가)

  • Eliezel, Habineza;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

A vacuum tube based pulse generator for gas lasers (기체 레이저용 진공관식 펄스 전원)

  • Jin, Jeong-Tae;Cha, Byung-Heon;Nam, Sung-Mo;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.221-223
    • /
    • 2002
  • This paper describes a vacuum tube based high voltage pulse generator for pulsed gas lasers. The pulse generator delivers 20 kV, 300 A pulse outputs with more than 10 kHz pulse repetition rates It can be controlled its Pulse width from 30 ns to 80 ns continuously without any hardware change.

  • PDF

Analysis of On-Line Partial Discharge in Air-Coolded Gas Turbine Generator (공랭식 가스터빈 발전기의 운전중 부분방전 분석)

  • Lee, Eun-Chun;Kong, Tae-Sik;Kim, Jae-Chul;Kim, Hee-Dong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.41-47
    • /
    • 2014
  • The on-line partial discharge (PD) in stator windings of air-cooled gas turbine (GT) generator (119.2MVA, 13.8kV) is measured and analyzed in this paper. This generator was designed by global vacuum pressure impregnation (VPI). The generator failed two times at top bar (16T) of phase B in the stator slot. Six epoxy-mica capacitors were installed in three phases of GT generator. On-line PD test was performed on GT generator using turbine generator analyzer (TGA). TGA showed that the normalized quantity number (NQN) and the PD magnitude($Q_m$) were high in phase B. Internal discharges were generated in phases A, B and C. The trend analysis of NQN and $Q_m$ value are obtained in order to monitor the insulation condition in GT generator stator windings. Phases A and C were in good condition. But phase B had deteriorated significantly