• Title/Summary/Keyword: gas film

Search Result 2,504, Processing Time 0.026 seconds

Nitrogen Monoxide Gas Sensing Characteristics of Transparent p-type Semiconductor CuAlO2 Thin Films (투명한 p형 반도체 CuAlO2 박막의 일산화질소 가스 감지 특성)

  • Park, Soo-Jeong;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.477-482
    • /
    • 2013
  • We investigated the detection properties of nitrogen monoxide (NO) gas using transparent p-type $CuAlO_2$ thin film gas sensors. The $CuAlO_2$ film was fabricated on an indium tin oxide (ITO)/glass substrate by pulsed laser deposition (PLD), and then the transparent p-type $CuAlO_2$ active layer was formed by annealing. Structural and optical characterizations revealed that the transparent p-type $CuAlO_2$ layer with a thickness of around 200 nm had a non-crystalline structure, showing a quite flat surface and a high transparency above 65 % in the range of visible light. From the NO gas sensing measurements, it was found that the transparent p-type $CuAlO_2$ thin film gas sensors exhibited the maximum sensitivity to NO gas in dry air at an operating temperature of $180^{\circ}C$. We also found that these $CuAlO_2$ thin film gas sensors showed reversible and reliable electrical resistance-response to NO gas in the operating temperature range. These results indicate that the transparent p-type semiconductor $CuAlO_2$ thin films are very promising for application as sensing materials for gas sensors, in particular, various types of transparent p-n junction gas sensors. Also, these transparent p-type semiconductor $CuAlO_2$ thin films could be combined with an n-type oxide semiconductor to fabricate p-n heterojunction oxide semiconductor gas sensors.

A study on effect of heat transfer of condensation including noncondensable gas over a flat plate (불응축가스가 평판위 응축열전달에 미치는 영향에 관한 연구)

  • 양대일;정형호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • In present paper, mass transfer over a flat plate with film condensation including noncondesable gas is analyzed with the help of similarity methods. Couette flow was assumed in liquid film and boundary-layer approximation was used in the ambient flow. Governing equations were transformed into the ordinary differential equtions by the similarity methods. Runge-Kutta and shooting method were used in order to fine the effect of mass transfer on the velocity and concentrations at the liquid-vapor interface.

  • PDF

Optical properties of Si thin films grown by PLD (PLD로 제작한 Si 박막에서의 광학적 특성분석)

  • 배상혁;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.532-534
    • /
    • 2000
  • Si thin films on p-type (100) Si substrate have been fabricated by pulsed laser deposition technique using a Nd:YAG laser. The pressure of the environmental gas during deposition was varied from 1 to 3 Torr. After deposition, Si thin film has been annealed again at nitrogen ambient. Strong violet-indigo photoluminescence have been observed from Si thin film annealed in nitrogen ambient gas. As increasing environmental gas pressure, weak green and red emissions from annealed Si thin films also observed by photoluminescence.

  • PDF

Corrosion Monitoring for Protected Systems using Thin-Film Electrical Resistance (TFER) Sensor

  • Lee, Seong-Min;Li, SeonYeob;Jung, Sung-Won;Kim, YoungGeun;Song, HongSeok;Won, Deok-Soo
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.112-116
    • /
    • 2006
  • This study has been conducted to monitor the corrosion rate of cathodically protected structure and corrosion inhibited system using multi-line thin-film electrical resistance (TFER) sensor in various environments. The field test data of TFER sensor for the corrosion monitoring of cathodically protected underground pipeline in soil environments and of corrosion inhibited gas heaters were also presented. The sensor was found to be a powerful method to commit the sensitive pick-up of small corrosion rate which can be observed in the cathodically protected and corrosion inhibited systems.

The Correlation Properties between Substrate and Molybdenum Back Contacts Fabricated by DC Magnetron Sputtering (DC 반응성 스퍼터링법에 의해 제조된 몰리브덴 후면전극과 기판과의 상관특성분석)

  • Kim, Seok-Gi;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.3
    • /
    • pp.149-154
    • /
    • 2000
  • Bi-layer Mo films were deposited on soda-lime glass substrates using DC magnetron supttering. Increasing gas pressure, the resistivity varied from $1\times10^{-5}\; to\; 8.3\times10^{-3}\; \Omega.cm$. Furthermore, stress direction yielded compressive-to-tensile transition stress curves. The micro-structure of the compressively-stressed film which had poor adhesion consists of tightly packed columns, but of the tensile-stressed films had less dense structure. Under all gas pressure conditions, Mo films exhibited distinctly increasing optical reflection with decreasing gas pressure. The expansion of (110) peak width with the gas pressure meant the worse crystalline growth. The impurity levels in the Mo film exhibited highly concentrated Na, Se and O elements due to less dense micro-structure. The degree of Na diffusion depends on the type of the glass substrate used and the nature of the Mo film.

  • PDF

Sensing Properties of $\alpha$-Fe$_2$O$_3$ Thin Film Gas Sensor to Reducing Gases ($\alpha$-Fe$_2$O$_3$ 박막 센서의 환원성 가스감지특성)

  • 이은태;장건익;이덕동
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.465-470
    • /
    • 1999
  • Sensing properties of $\alpha$-Fe2O3 thin film to reducing gases such as CHx and CO were systematically examined after deposition on Al2O3 substrate by PECVD(Plasma Enhanced Chemical Vapor Deposition)technique. Microstructure of deposited $\alpha$-Fe2O3 thin film showed the porous island structure. This specimen was annealed at 450, 550, $650^{\circ}C$ to enhance the gas sensing properties and investigated in terms of CO and C4H10 concentration from 500ppm to 3,000 ppm at operating temperature of 35$0^{\circ}C$ The gas sensitivity(%) to C4H10 measured at the operating temperature of 35$0^{\circ}C$ was 98.24 (highest sensitivity) 69.51 to CO and 2% to CH4 respectviely.

  • PDF

Flow Characteristics of Vertical Upward Gas-Liquid Two-Phase Flow (수직상향 기액이상류의 유동특성)

  • Choi Bu-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.377-383
    • /
    • 2005
  • This paper deals with the flow characteristics of air-water two-phase flow in a vertical tube of 10mm I.D. and 600mm in length at an adiabatic condition. The obtained experimental data were covered with the liquid superficial velocity ranging from 0.095m/s to 2.56m/s. and the gas superficial velocity ranging from 0.032m/s to 21.08m/s. The effects of the gas and liquid superficial velocity on the flow pattern transitions, frictional pressure drop, and film thickness and gas-liquid interface roughness were also examined. It was found that the film thickness increased and the liquid film wave length was more longer with the liquid superficial velocity $j_L$ increasing at $j_G$ constant. It was also showed that the frictional pressure drops were experienced in three regions. namely increasing region(bubbly flow), decreasing region (Taylor bubble and slug flows) and re-increasing region (annular flow).

Sensing and Degradation Properties in the Quartz Crystal Microbalance Coated with the PVC and the Lipid Blended Materials (지질과 PVC의 혼합액을 감응막으로 도포한 수정진동자 가스센서의 센싱 및 열화특성)

  • Jang, Kyung-Uk;Kim, Myung-Ho;Choi, Myung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.44-47
    • /
    • 2000
  • In the recognition of the gases using the quartz crystal microbalance (QCM) coated with the film materials, it is important to obtain the recognition ability of gases, and the stability of film coated above the QCM. Especially, the thickness of film coated above the QCM is decreased according with the using circumstance and time of QCM gas sensor. Therefore, the sensing characteristics of film is changed with these. In this paper, we coated the lipid PC (Phosphatidyl Choline) materials varing with the blended amount of PVC(Poly Vinyl Chloride) and solution (Tetra Hydrofan:THF) above QCM to obtain the sensitive and the stability of lipid PC film. QCM gas sensors coated with film materials were measured the frequency change in the chamber of stationary gas sensing system injected 1-hexane, ethyl acetate, ethanol and benzene of $20{\mu}{\ell}$, respectively. We also measured the degradation characteristics of QCM gas sensor to show the properties of stability.

  • PDF

Degradation Properties in the QCM Gas Sensors Coated with the PEG Materials (PEG 물질을 도포한 QCM 가스센서의 열화특성)

  • Jang, Kyung-Uk;Kim, Myung-Ho;Lee, Won-Jae;Kim, Sang-Keol;Jung, Dong-Hoe;Lee, Joon-Ung;Lee, Ho-Sik;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.218-222
    • /
    • 2002
  • In the recognition of the gases using the quartz crystal microbalance (QCM) coated with the PEG film materials, it is important to obtain the recognition ability of gases, and the stability of PEG film coated above the QCM. Especially, the thickness of PEG film coated above the QCM is decreased according with the using circumstance and time of QCM gas sensor. Therefore, the sensing characteristics of PEG film is changed with these. In this paper, we coated the PEG materials varing with the blended amount of PVC(Poly Vinyl Chloride) and chloroform above QCM to obtain the sensitive and the stability of PEG film. We measured the degradation characteristics of QCM gas sensor in the ethyle acetate 50[%] concentration to show the properties of stability.

  • PDF

Modeling of PECVD Oxide Film Properties Using Neural Networks (신경회로망을 이용한 PECVD 산화막의 특성 모형화)

  • Lee, Eun-Jin;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.831-836
    • /
    • 2010
  • In this paper, Plasma Enhanced Chemical Vapor Deposition (PECVD) $SiO_2$ film properties are modeled using statistical analysis and neural networks. For systemic analysis, Box-Behnken's 3 factor design of experiments (DOE) with response surface method are used. For characterization, deposited film thickness and film stress are considered as film properties and three process input factors including plasma RF power, flow rate of $N_2O$ gas, and flow rate of 5% $SiH_4$ gas contained at $N_2$ gas are considered for modeling. For film thickness characterization, regression based model showed only 0.71% of root mean squared (RMS) error. Also, for film stress model case, both regression model and neural prediction model showed acceptable RMS error. For sensitivity analysis, compare to conventional fixed mid point based analysis, proposed sensitivity analysis for entire range of interest support more process information to optimize process recipes to satisfy specific film characteristic requirements.