• 제목/요약/키워드: gas film

검색결과 2,504건 처리시간 0.025초

스퍼터링법으로 제조된 Pd-doped $SnO_2$ 박막의 수소가스 감도 특성 (The Hydrogen Gas Sensing Characteristics of the Pd-doped $SnO_2$ Thin Films Prepared by Sputtering)

  • 차경현;김영우;박희찬;김광호
    • 한국세라믹학회지
    • /
    • 제30권9호
    • /
    • pp.701-708
    • /
    • 1993
  • Pd-doped SnO2 thin films for hydrogen gas sensing were fabricated by reactive fo magnetron sputtering and were studied on effects of film thickness and Pd doping content. Pd doping caused the optimum sensor operation temperature to reduce down to ~25$0^{\circ}C$ and also enhanced gas sensitivity, compared with undoped SnO2 film. Gas sensitivity depended on the film thickness. The sensitivity increased with decreasing the film thickness, showing maximum sensitivities at the thickness of 730$\AA$ and 300~400$\AA$ for the undoped SnO2 and the Pd-doped SnO2 film, respectively. Further decrease of the film thickness beyond these thickness ranges, however, resulted in the reduction of sensitivity again.

  • PDF

Copper-tetra-tert-butylphthalocyanine(CuTBP) LB 막의 NO$_2$ 가스탐지 특성에 관한 연구 (A study on the NO$_2$gas detection characteristics of the Copper - tetra - tert -butylphthatsocyanine (CuTBP ) LB Film)

  • 김형석;유병호;조형근;한영재;김태완;김정수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 추계학술대회 논문집
    • /
    • pp.118-121
    • /
    • 1994
  • The NO$_2$ gas-detection characteristics were investigated using the functional organic Langmuir-Blodgett(LB) film of Copper-tetra-tert-butylphalocyanine(CUTBP). The optimum conditions for a film deposition were obtained through a study of $\pi$-A isotherm and the deposited film status was confirmed by ellipsometry measurements. In the NO$_2$ response experiments, first of all, the proper number of layer was obtained by a change of the electrical conductivities depending on the number of layer when the film is exposed to the gas. And response time, recovery time, and reproducibility were measured on it. On the other hand, how the NO$_2$ gas interacts to the LB film was studied by UV/visible absorption spectra.

NOX 가스 검출 특성을 이용한 MWCNT/ZnO 복합체 필름 가스 센서의 메커니즘 분석 (The Analysis of Mechanism for the Gas Sensor of MWCNT/ZnO Composites Film Using the NOX Gas Detection Characteristics)

  • 손주형;김현수;박용서;장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제31권3호
    • /
    • pp.188-192
    • /
    • 2018
  • In this study, we fabricated an $NO_X$ gas sensor using a composite film of multi-walled carbon nanotubes (MWCNT)/zinc oxide (ZnO). Carbon nanotubes (CNTs) show good electronic conductivity and chemical-stability, and zinc oxide (ZnO) is a wide band gap semiconductor with a large exciton binding energy. Gas sensors require characteristics such as high speed, sensitivity, and selectivity. The fabricated gas sensor was used to detect $NO_X$ gas at different $NO_X$ concentrations. The sensitivity of the gas sensor increased with increasing gas concentrations. Additionally, while changing the temperature inside the chamber containing the MWCNT/ZnO gas sensor, we obtained the sensitivity and normalized responses for detecting $NO_X$ gas in comparison to ZnO and MWCNT film gas sensors. From the experimental results, we confirmed that the gas sensor sensing mechanism was enhanced in the composite-film gas-sensor and that the electronic interaction between MWCNT and ZnO contributed to the improved sensor performance.

RF-diode Sputtering법으로 제작한 Co박막의 자기특성과 미세구조 (Magnetic Properties and Microstructure of Co Thin Films by RF-diode Sputtering Method)

  • 한창석;김상욱
    • 한국재료학회지
    • /
    • 제28권3호
    • /
    • pp.159-165
    • /
    • 2018
  • In order to increase the efficiency of the sputtering method widely used in thin film fabrication, a dc sputtering apparatus which supplies both high frequency and magnetic field from the outside was fabricated, and cobalt thin film was fabricated using this apparatus. The apparatus can independently control the applied voltage, the target-substrate distance, and the target current, which are important parameters in the sputtering method, so that a stable glow discharge is obtained even at a low gas pressure of $10^{-3}$ Torr. The fabrication conditions using the sputtering method were mainly performed in $Ar+O_2$ mixed gas containing about 0.6 % oxygen gas under various Ar gas pressures of 1 to 30 mTorr. The microstructure of Co thin films deposited using this apparatus was examined by electron diffraction pattern and X-ray techniques. The magnetic properties were investigated by measuring the magnetization curves. The microstructure and magnetic properties of Co thin films depend on the discharge gas pressure. The thin film fabricated at high gas pressure showed a columnar structure containing a large amount of the third phase in the boundary region and the thin film formed at low gas pressure showed little or no columnar structure. The coercivity in the plane was slightly larger than that in the latter case.

Characteristics of a Metal-loaded SnO2/WO3 Thick Film Gas Sensor for Detecting Acetaldehyde Gas

  • Jun, Jae-Mok;Park, Young-Ho;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1865-1872
    • /
    • 2011
  • This study investigates the sensitivity of a gas sensor to volatile organic compounds (VOCs) at various operating temperatures and catalysts. Nano-sized powdered $WO_3$ prepared by sol-gel and chemical precipitation methods was mixed with various metal oxides. Next, transition metals (Pt, Ru, Pd, and In) were doped on the surface of the mixture. Metal-$WO_3$ thick films were prepared using the screen-printing method. The physical and chemical properties of the films were studied by SEM/EDS, XRD, and BET techniques. The measured sensitivity to VOCs is defined as the ratio ($R_a/R_g$) of resistance ($R_{air}$) of $WO_3$ film in the air to resistance ($R_{gas}$) of $WO_3$ film in a VOCs test gas. The sensitivity and selectivity of the films were tested with various VOCs such as acetaldehyde, formaldehyde, methyl alcohol, and BTEX. The thick $WO_3$ film containing 1 wt % of Ru and 5 wt % of $SnO_2$ showed the best sensitivity and selectivity to acetaldehyde gas at an operating temperature of 300 $^{\circ}C$.

Design of a Smart Gas Sensor System for Room Air-Cleaner of Automobile (Thick-Film Metal Oxide Semiconductor Gas Sensor)

  • Kim, Jung-Yoon;Shin, Tae-Zi;Yang, Myung-Kook
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.408-412
    • /
    • 2007
  • It is almost impossible to secure the reproductibility and stability of a commercial Thick-Film Metal Oxide Semiconductor Gas Sensor since it is very difficult to keep the consistency of the manufacturing environment. Thus it is widely known that the general Semiconductor-Oxide Gas Sensors are not appropriate for precise measurement systems. In this paper, the output characteristic analyzer of the various Thick-Film Metal Oxide Semiconductor Gas Sensors that are used to recognize the air quality within an automobile are proposed and examined. The analyzed output characters in a normal air chamber are grouped by sensor ranks and used to fill out the characteristic table of the Thick-Film Metal Oxide Semiconductor Gas Sensors. The characteristic table is used to determine the rank of the sensor that is equipped in the current air cleaner system of an automobile. The proposed air control system can also adapt the on-demand operation that recognizes the history of the passenger's manual-control.

DC 마그네트론 스퍼터로 증착한 flexible OLED용 IZO 박막의 기계적 특성과 투습특성에 미치는 반응성 가스 첨가의 효과 (Effects of Reactive Gas Addition on the Mechanical Property and Water Permeability of IZO Films Deposited by DC Sputtering for Application to Flexible OLED)

  • 천고은;이동엽;조영래;송풍근
    • 한국표면공학회지
    • /
    • 제40권6호
    • /
    • pp.245-249
    • /
    • 2007
  • Amorphous IZO films were deposited on PET substrate by DC magnetron sputtering without substrate heating. In order to investigate effect of reactive gas addition on film properties, 0.2-0.4% of $H_2$ or $O_2$ gas was introduced during the deposition. Deposited IZO films were evaluated with mechanical property, electrical property, and water permeability. In the case of $H_2$ gas addition, mechanical property showed clear degradation compared to $O_2$ gas. In the case of $O_2$ gas, water permeability of the IZO film was increased compared to $H_2$ gas which could be attributed to the low adhesion of the film caused by bombardment of high energy negative oxygen ion. As a result, it is confirmed that water permeability of the film could be strongly affected by adhesion of the film.

DLC 박막의 전기전도성, 투과율 및 가스베리어 특성에 관한 연구 (Study on Electrical Conductivity, Transmittance and Gas Barrier Properties of DLC Thin Films)

  • 박새봄;김치환;김태규
    • 열처리공학회지
    • /
    • 제31권4호
    • /
    • pp.187-193
    • /
    • 2018
  • In this study, the electrical conductivity, transmittance and gas barrier properties of diamond-like carbon (DLC) thin films were studied. DLC is an insulator, and has transmittance and oxygen gas barrier properties varying depending on the thickness of the thin film. Recently, many researchers have been trying to apply DLC properties to specific industrial conditions. The DLC thin films were deposited by PECVD (Plasma Enhanced Chemical Vapor Deposition) process. The doping gas was used for the DLC film to have electrical conductivity, and the optimum conditions of transmittance and gas barrier properties were established by adjusting the gas ratio and DLC thickness. In order to improve the electrical conductivity of the DLC thin film, $N_2$ doping gas was used for $CH_4$ or $C_2H_2$ gas. Then, a heat treatment process was performed for 30 minutes in a box furnace set at $200^{\circ}C$. The lowest sheet resistance value of the DLC film was found to be $18.11k{\Omega}/cm^2$. On the other hand, the maximum transmittance of the DLC film deposited on the PET substrate was 98.8%, and the minimum oxygen transmission rate (OTR) of the DLC film of $C_2H_2$ gas was 0.83.

가스 크로마토그래피를 부착한 표면탄성파 가스 센서 (Surface acoustic wave gas sensors by assembling gas chromatography column)

  • 유범근;박용욱;강종윤;윤석진;최두진;김진상
    • 센서학회지
    • /
    • 제16권1호
    • /
    • pp.39-43
    • /
    • 2007
  • This paper presents characteristics of surface acoustic wave (SAW) gas sensor for detecting volatile gases such as acetone, methanol, and ethanol by measuring phase shift of output signal. A delay-line by combining with a center frequency of 200 MHz was fabricated on S-T Quartz substrates. Using gas chromatography column, the selectivity of the SAW gas sensor were introduced. Experimental results, which show the phase change of output signal under the absorption of volatile gas on sensor surface, were presented. This SAW gas sensor system may be well suited for a high performance electronic nose system.

나노 가스 감지 소자의 특성에 미치는 촉매 구조의 영향 (Elect of Catalytic Configuration on Sensing Properties of Nano Gas Sensor)

  • 홍성제;;한정인
    • 한국전기전자재료학회논문지
    • /
    • 제18권10호
    • /
    • pp.917-923
    • /
    • 2005
  • In this paper, effect of catalytic configuration on the sensing properties of $SnO_2$ nanoparticle gas sensitive thick film was investigated. Two types of catalytic configuration, mono and binary, were made on the $SnO_2$ nanoparticle. In case of mono catalytic system, $3 wt\%$ Pd or Pt catalyst was doped onto the $SnO_2$ nanoparticle, respectively. In case of binary catalytic system, Pd and Pt was doped simultaneously with concentration ratio of 1:2 to 2:1 onto the $SnO_2$ nanoparticle. After doping, gas sensitive thick film was printed on alumina substrate and heat-treated at 450 to $600^{\circ}C$. Gas sensing properties was evaluated using 500 to 10,000 ppm $CH_4$ gas. As a result, gas sensitive thick film with binary catalytic system showed unstable phenomena that the gas sensitivity was changed according to aging time. In contrary, the mono catalytic system showed relatively stable phenomena despite of aging time. Especially, gas sensitive thick film doped with $3 wt\%$ Pt catalyst and heat-treated at $500^{\circ}C$ showed good sensing properties such as 0.57 of $R_{3500}/R_{1000}$ and very small variation within $3.5\%$ after aging for 5 hours, and response time was very short less than 20 seconds.