• Title/Summary/Keyword: gas distributor

Search Result 29, Processing Time 0.03 seconds

A Numerical Study on Various Energy and Environmental System (II) (에너지${\cdot}$환경 제반 시스템에 관한 수치해석적 연구(II))

  • Jang D. S.;Park B. S.;Kim B. S.;Lee E. J.;Song W. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.58-67
    • /
    • 1996
  • This paper describes some computational results of various energy and environmental systems using Patankar's SIMPLE method. The specific topics handled in this study are jet bubbling reactor for flue gas desulfurization, cyclone-type afterburner for incineration, 200m tall stack for 500 MW electric power generation, double skin and heat storage systems of building energy saving for the utilization of solar heating, finally turbulent combustion systems with liquid droplet or pulverized coal particle. A control-volume based finite-difference method with the power-law scheme is employed for discretization. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, that is, SIMPLEC. Reynolds stresses are closed using the standard $k-{\varepsilon}$ and RNG $k-{\varepsilon}$ models. Two-phase turbulent combustion of liquid drop or pulverized coal particle is modeled using locally-homogeneous, gas-phase, eddy breakup model. However simple approximate models are incorporated for the modeling of the second phase slip and retardation of ignition without consideration of any detailed particle behavior. Some important results are presented and discussed in a brief note. Especially, in order to make uniform exit flow for the jet bubbling reactor, a well-designed structure of distributor is needed. Further, the aspect ratio in the double skin system appears to be one of important factors to give rise to the visible change of the induced air flow rate. The computational tool employed in this study, in general, appears as a viable method for the design of various engineering system of interest.

  • PDF

Characterization of flow properties of pharmaceutical pellets in draft tube conical spout-fluid beds

  • Foroughi-Dahr, Mohammad;Sotudeh-Gharebagh, Rahmat;Mostoufi, Navid
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.274-281
    • /
    • 2018
  • Experimental studies of the hydrodynamic performance of the draft tube conical spout-fluid bed (DCSF) were conducted using pharmaceutical pellets. The experiments were carried out in a DCSF consisted of two sections: (a) a conical section with the cross section of $120mm{\times}250mm$ and the height of 270 mm, (b) a cylindrical section with the diameter of 250 mm and the height of 600 mm. The flow characteristics of solids were investigated with a high speed camera and a pezoresistive absolute pressure transducer simultaneously. These characteristics revealed different flow regimes in the DCSF: packed bed at low gas velocities, fluidized bed in draft tube at higher gas velocities until minimum spouting, and spouted bed. The stable spouting was identified by the presence of two dominant frequencies of the power spectrum density of pressure fluctuation signature: (i) the frequency band 6-9 Hz and (ii) the frequency band 12-15 Hz. The pressure drops across the draft tube as well as the annulus measured in order to better recognize the flow structure in the DCSF. It was observed that the pressure drop across the draft tube, the pressure drop across the annulus, and the minimum spouting velocity increase with the increase in the height of draft tube and distance of the entrainment zone, but with the decrease in the distributor hole pitch. Finally, this study provided novel insight into the hydrodynamic of DCSF, particularly minimum spouting and stable spouting in the DCSF which contains valuable information for process design and scale-up of spouted bed equipment.

Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media (고점성 낮은표면장력 매체 기포탑에서 열전달)

  • Kim, Wan Tae;Lim, Dae Ho;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.516-521
    • /
    • 2014
  • Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02~0.1 m/s), liquid viscosity ($0.1{\sim}0.3Pa{\cdot}s$) and surface tension ($66.1{\sim}72.9{\times}10^{-3}N/m$) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; $$h=2502U^{0.236}_{G}{\mu}^{-0.250}_{L}{\sigma}^{-0.028}_L$$ $$Nu=325Re^{0.180}Pr^{-0.067}We^{0.028}$$.

Performance Evaluation of 1 N Class HAN/Methanol Propellant Thruster (HAN/메탄올 추진제를 사용하는 1 N급 추력기 성능 평가)

  • Lee, Jeongsub;Huh, Jeongmoo;Cho, Sungjune;Kim, Suhyun;Park, Sungjun;Kim, Sukyum;Kwon, Sejin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.299-304
    • /
    • 2013
  • The HAN which is an ionic liquid is a non-toxic monopropellant with high storability, and its specific impulse can be increased by blending methanol, thereby it can substitute the hydrazine. The HAN was synthesized by acid-base reaction of hydroxylamine and nitric acid, and the blending ratio of HAN and methanol is 8.2:1. The iridium catalyst was used to decompose the HAN, and 1 N class thruster with shower head type injector having one orifice was used to evaluate the HAN/Methanol propellant. The thermal stability of distributor was increased by using ceramic material to endure the high temperature of product gas. The preheating temperature of catalyst should be $400^{\circ}C$ at least for the complete decomposition. The feeding pressure should be increased to increase the $C^*$ efficiency, thereby the decomposition performance was decreased upstream catalyst, and the performance of thruster was decreased. The fine metal mesh was inserted after the injector to improve the atomization of propellant, thereby it can settle the performance decrease problem. The phenomenon of performance decrease was remarkably improved owing to the insertion of fine metal mesh.

The Characteristics of Solid Mixing in a Vibrating Type Feeder and Pressure Fluctuation of Packing Materials for a Fluidized Bed Combustor (유동층 연소로에서 진동형 공급기의 고체혼합 및 충전물에 대한 압력요동 특성)

  • 김미영;김의식
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.101-109
    • /
    • 1999
  • This study attempts to analyse the solid mixing in the feeder and the packing effect for pressure fluctuations in the fluidized bed. To study the mixing characteristics of solid in vibrating feeder for the stable operations of fluidized combustion, the system consisted of two groups of particles such that fine particles were located on the top of the coarse particles before vibratory mixing had started. The effects of packing materials on the pressure fluctuations in a fluidized bed were analysed by using a statistical method to interpret the behavior of fluidized bed. The experiments were carried out in a fluidized bed of 6.7cm-ID, and the experimental variables were particle sizes, of 115 to 1,015$\mu\textrm{m}$ in diameter and the multi-sized particles haying Rosin-Rammler and Gaussian distributions. The settled bed heights of particles to diameter ratios (L/D) were ranged from 0.5 to 2.0. And fluidizing of particles was carried out by air. The packing materials used were screen packing, and the properties of the pressure fluctuations in the fluidized bed were measured by a differential pressure transducer. The properties of the pressure fluctuations calculated were the mean, the standard deviation, and the major frequency of the power spectral density functions. From the characteristics of fluidizing, it was found that the standard deviation of pressure fluctuations could be effectively used to explain the fluidized phenomena, and the packing materials affected severely the properties of the pressure fluctuations. As a result, from the interpretation by spectral analysis, the effects of measuring radius of pressure fluctuations on standard deviation were constant in the case of the fluidized bed with and without packing materials. However, the effects of measuring the height of pressure fluctuations on standard deviations were linear increasing for the fluidized bed with packing materials, but were constant for the fluidized bed without packing materials at 4.5cm above the gas distributor. The major frequency of pressure fluctuations was found to be nearly independent of fluidized system. Also, the major frequency of pressure fluctuations decreased with increasing packing size, and it had maximum value at 10% of the packing amount.

  • PDF

Tube Erosion Rate of Water Wall in a Commercial Circulating Fluidized Bed Combustor (상용 순환 유동층 연소로 수관벽 전열관 마모속도)

  • Kim, Tae-Woo;Choi, Jeong-Hoo;Shun, Do-Won;Son, Jae-Ek;Jung, Bongjin;Kim, Soo-Sup;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.525-530
    • /
    • 2005
  • The erosion rate of water wall tube has been measured and discussed in a commercial circulating fluidized bed combustor (200 ton steam/hr, $4.97{\times}9.90{\times}28.98m\;height$). Tube thickness was measured with ultrasonic method. Severe tube erosion rate was observed in the splash region on all waterwalls including wingwalls. The tube erosion rate increased after an initial decrease as height from the distributor increased. The difference of erosion rate among wing walls was found due to unbalanced distribution of gas and solid flow rates. The erosion rate of the wing wall increased as location of the wing wall became closer to the center of combustor crosssection.

A Study on Prevention of Fouling Formation by Reduction Reaction of CaSO4 in a Biomass Circulating Fluidized Bed Combustion (바이오매스 순환유동층 연소에서 CaSO4 환원반응에 의한 파울링 발생 방지 연구)

  • Seong-Ju Kim;Sung-Jin Park;Sung-Ho Jo;Se-Hwa Hong;Yong-Il Mun;Tae-Young Mun
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • A large amount of carbon monoxide (CO) is generated in circulating fluidized bed combustion, the process whereby a hot cyclone separates unburned fuel. However, calcium sulfate (CaSO4), when combined with a high CO content, can cause fouling on the surface of the steam tube installed inside the integrated recycle heat exchangers (INTREX). In this study, CaSO4 decomposition was investigated using 0.2-3.2 vol.% CO and 1-3 vol.% oxygen (O2) at 850℃ for 20 min in a lab-scale fluidized bed reactor. The results show that CaSO4 decomposes into CaS and CaO when CO gas is supplied, and SO2 emissions increase from 135 ppm to 1021 ppm with increasing CO concentration. However, the O2 supply delayed SO2 emissions because the reaction between CO and O2 is faster than that of CaSO4; nevertheless, when supplied with CaCO3, the intermediate product, SO2 was significantly released, regardless of the CO and O2 supply. In addition, agglomerated solids and yellow sulfur power were observed after solid recovery, and the reactor distributor was corroded. Consequently, a sufficient O2 supply is important and can prevent fouling formation on the INTREX surface by suppressing CaSO4 degradation.

Studies on Thermal Oxidation of Soybean Oil -I. Changes in Some Chemical and Physical Properties of a Soybean Oil during Thermal Oxidation- (대두유의 가열산화중의 특성변화 -제 1 보 : 가열산화중의 대두유의 일부 화학적, 물리적 성질의 변화-)

  • Shin, Ae-Ja;Kim, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.257-264
    • /
    • 1982
  • In the present stud changes of some chemical and physical properties of a soybean oil, aerated at 120 ml/min through a porous gas distributor and oxidized at $45^{\circ}C{\sim}180^{\circ}C$, was investigated. The results of the study were as follows: The peroxide, thiobarbituric acid, and iodine value of the soybean oil which was aerated at 120 ml/min increased rapidly as oxidation temperature exceeded over $80^{\circ}C$. The acid value of the oil increased very rapidly as the oxidation temperature passed over $160^{\circ}C$. The content of the unsaturated fatty acid of the oil decreased considerably as the oxidation temperature exceeded over $80^{\circ}C$, whereas that of the saturated fatty acid did not change appreciably. This related well to the changes of the iodine value of the oil subjected to the same experimental conditions. The viscosity and refractive index of the oil increased rapidly as the oxidation temperature passed over $180^{\circ}C$. The following linear relationship hold for the viscosity and refractive index of the oil in the present study. $$V=Aexp({\frac{E}{RT}})$$ where V=viscosity(poise), A=constant, E=activation energy for viscous flow, R=gas constant, T=oxidation temperature$(^{\circ}K)$. The following relationship also hold for the viscosity and refractive index$({n^{20}}_D)$ of the oil at the present experimental conditions. $${n^{20}}_D=1.4614+7.333{\times}10^{-5}t+2.9612{\times}10^{-3}\;InV$$ where t=temperature$(^{\circ}C)$ at which the viscosity was measured.

  • PDF

Performance test of double swirl burner for the development of pilot scale compact gasifier (컴팩트 석탄 가스화기 개발을 위한 이중선회버너 운전 평가)

  • Kang, Suk-Hwan;Ryu, Jae-Hong;Chung, Seok-Woo;Jung, Woo-Hyun;Yoo, Sang-Oh;Lee, Do-Yeon;Yun, Yongseung;Lee, Jin-Wook;Kim, Gyoo-Tae;Yi, Min-Hoe
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.96-104
    • /
    • 2013
  • Coal gasification is considered as one of the best alternatives among clean coal technology and new concept next generation technologies are under being developed to achieve low cost as well as high efficiency. In this study we have developed double swirl multi-burner as part of the development of low cost compact gasifier. We installed new concept multi-burner with pulverized coal distributor to the body of existing gasifier for burner test. Gasification test was performed under the condition of $6.4{\sim}7.2kg/cm^2$ and $1170{\sim}1300^{\circ}C$ by using Indonesian ABK (sub-bituminous) coal to get operation condition of new concept multi-burner. Our interest was focused to ensure a stable operating condition rather than the gasifier performance evaluation. As a result, we were able to achieve the carbon conversion of 84% and the cold gas efficiency of 52.1% at the stable operating conditions.