• 제목/요약/키워드: gas diffusion

검색결과 1,043건 처리시간 0.026초

종이내 수분확산(제2보)-종이의 공극구조에 의한 수분확산 이론- (Molecular Diffusion of Water in Paper(II)-Water-diffusion theory on pore structure of paper-)

  • 윤성훈;전양
    • 펄프종이기술
    • /
    • 제30권3호
    • /
    • pp.46-56
    • /
    • 1998
  • The objective of this study was to investigate the relationship between water vapor diffusion properties and the pore structure of paper. Gas-phase molecular diffusivity of water vapor through pores was determined based on the kinetic theory of gas. A mathematical model was derived to characterize the dimensional changes of the pore caused by the fiber-swelling mechanism. A modified-Fickean diffusion model was designed to simulate the water-vapor diffusion phenomena in porous paper web. Structural characterisocs of paper pores including the tortuosity and the shape factor was studied on a theoretical basis of Knudsen flow diffusion. Results are summarized as follows: 1. The theoretical water vapor diffusivity in gas-phase was 0.092$cm^2$ /min, 2. Porosity was inversely proportional to the degree of wet-swelling of paper, 3. Solid-phase water-diffusivity of fiber was 1.2 $ \times 10^{-5}cm^2/min$, 4. Modified diffusion model was fairly consistent to the experimental data (from part I), and 5. The Fickean pore tortuosity, ranging from 1,000 to 2,500, was in inverse proportion to the porosity of paper, and the Knudsen shape factor and length-angle factor for micro-pores in paper were 0.5~3.5 and about 340, respectively.

  • PDF

염수 전해용 가스확산 전극에 관한 연구 (Research on the Gas Diffusion Electrode for the Brine Electrolysis)

  • 이동호;이광현;한정우;임정택;이오상;이재도
    • 전기화학회지
    • /
    • 제5권1호
    • /
    • pp.7-12
    • /
    • 2002
  • 염수 전해 공정에서 산소음극형 가스화산전극의 적용에 대해 연구, 조사하였다. 가스확산전극은 반응층, 가스확산층, 급 전체로 구성된다. 반응층은 친수성 카본블랙, 소수성 카본블랙, PTFE(polytetrafluoroethylene), 은거울반응이나 함침법에 의해 담지된 은 촉매로 제조하였다. 가스확산충은 소수성 카본블랙과 PTFE로 제조되며, 반응층 내에 사용되는 급전체는 Ni망을 사용하였다. 실험에 의하면 함침법에 의해 Ag촉매를 반응충 카본에 담지시켜 제작된 전극$(Ag\;10wt\%$,바인더 $20wt\%)$이 산소음극 과전압이 약 700mv, 전해조에 장착하여 측정한 전해전압(전해 조건이 $80^{\circ}C,\;32wt\%$ 가성소다 그리고 $300 mA/cm^2$의 전류 밀도)이 약 2.2V로 가장 우수한 결과를 나타내었다. 이는 기존 공정의 전해전압 3.4V에 비해 $30\%$이상 저감된 결과이다. 또한 개발된 가스확산 전극은 염수 분해용 전해 공정에서 3개월 연속 운전이 가능하였다.

건축공간에서 공기 감염균 확산을 해석하기 위한 추적가스 고찰과 농도에 따른 감염 위험성 예측 연구 (A Inquiry of Tracer Gas for Analysis of Dispersion and Prediction of Infection Possibility according to Airborne Viral Contaminants)

  • 임태섭;강승모;김병선
    • 한국실내디자인학회논문집
    • /
    • 제18권3호
    • /
    • pp.102-113
    • /
    • 2009
  • The SARS virus began to appear and spread in North America and Southeast Asia in the early 2000' s, infecting and harming many people. In the process of examining the causes for the virus, studies on the airborne SARS virus and the way it spread were carried out mainly in the medical field. In the field of architecture, studies were done on the diffusion of air pollutants in buildings using gases such as $CO_2$, $N_2O$, or $SF_6$, but research on virus diffusion was limited. There were also explanations of only the diffusion process without accurate information and discussion on virus characteristics. The aim of this study is to analyze the physical characteristics of airborne virus, consider the possibility of using coupled analysis model and tracer gas for analyzing virus diffusion in building space and, based on reports of how the infection spread in a hospital where SARS patients were discovered, analyze infection risk using tracer gas density and also diffusion patterns according to the location, shape, and volume of supply diffusers and exhaust grilles. This paper can provide standards and logical principles for evaluating various alternatives for making decisions on vertical or horizontal ward placement, air supply and exhaust installation and air volumes in medium or high story medical facilities.

고온 배기가스의 온도 및 유량이 확산화염의 구조 및 NOx 발생에 미치는 영향 (The Effect of Temperature and Flow Rate in Hot Exhaust Gas on the NOx Emission and Flame Structure of Diffusion Flame)

  • 손화승;장시웅;김호영
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.139-146
    • /
    • 2001
  • The experimental study was carried out for the diffusion flame characteristics of second stage combustor with the variations of temperature and supplying rate of hot exhaust gas from first stage combustor. It also examined the flame structure and NOx formation of the second stage combustor in which the fuel(natural gas) is supplying into the mixture of oxygen hot exhaust gas from first stage combustor. The results show that the increasement of temperature and flow rate of exhaust gas lead to increase the NOx up to 30ppm with 19% $O_2$ condition

  • PDF

인산형 연료전지용 다공성 박막의 표면 다공도에 관한 연구 (Study on the surface porosity of porous thin layer electrode for phosphoric acid fuel cell)

  • 김조웅;김영우;이주성
    • 한국표면공학회지
    • /
    • 제24권3호
    • /
    • pp.162-168
    • /
    • 1991
  • Gas diffusion and electrolyte penetration in wetproofed gas diffusion electrodes were studied using layers of PTFE- bonded carbon. Minor variations in fabrication and testing procedures resulted in very large variations in catalyst layer wetting characteristics and permiability for reaction gas. By controlling the pore size of gas diffusion electrode carefully by varing the PTFE contents, baking temperature, baking time and ammonium bicarbonate as additive, the primary pore was decreased and the secondary pore was increased and so more reaction gas through the primary pore could be reacted at catalyst agglomertes in the secondary pore. And the cathode current density was increased to more than 400mA.$\textrm{cm}^2$ and Tafel slope value was decreased to lower than 110mA/decade.

  • PDF

Fabrication of Organic-Inorganic Superlattice Films Toward Potential Use For Gas Diffusion Barrier

  • 윤관혁;;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.394-394
    • /
    • 2012
  • We fabricated organic-inorganic superlattice films using molecular layer deposition (MLD) and atomic layer deposition (ALD). The MLD is a gas phase process in the vacuum like to atomic layer deposition (ALD) and also relies on a self-terminating surface reaction of organic precursor which results in the formation of a monolayer in each sequence. In the MLD process, 'Alucone' is very famous organic thin film fabricated using MLD. Alucone layers were grown by repeated sequential surface reactions of trimethylaluminum and ethylene glycol at substrate temperature of $80^{\circ}C$. In addition, we developed UV-assisted $Al_2O_3$ with gas diffusion barrier property better than typical $Al_2O_3$. The UV light was very effective to obtain defect-free, high quality $Al_2O_3$ thin film which is determined by water vapor transmission rate (WVTR). Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of each organic, inorganic film. Composition of the organic films was confirmed by infrared (IR) spectroscopy. Ultra-violet (UV) spectroscopy was employed to measure transparency of the organic-inorganic superlattice films. WVTR is calculated by Ca test. Organic-inorganic superlattice films using UV-assisted $Al_2O_3$ and alucone have possible use in gas diffusion barrier for OLED.

  • PDF

An Experimental Study of the Diffusion Flame Characteristics for the Gas Fueled Torch System

  • Choi, Hyun-Kyung;Choi, Seong-Man
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.50-55
    • /
    • 2006
  • Currently, a gas fueled diffusion flame is used for the relay torch system. It could be burned cleanly but should be stable at severe weather condition such as rain of up to 55 mm/h, winds of up to 70 km/h and also produce a highly bright yellow visible flame. This paper presents torch diffusion flame characteristics on the various wind speeds and rainfall conditions. From the results, flame lengths are controlled by the momentum flux ratio of fuel and ambient air flow and flame stability is much influenced by the mixing characteristics with air flow. Flame is fluctuated above than 200 mm/h rainfall and blow out is occurred about 300 mm/h rainfall condition.

확산형 흡수식 냉장고의 사이클 해석 (Cycle Analysis of Diffusion Absorption Refrigerator)

  • 김선창;김영률;백종현;박승상
    • 설비공학논문집
    • /
    • 제14권10호
    • /
    • pp.817-824
    • /
    • 2002
  • A diffusion absorption refrigerator is a heat-generated refrigeration system. It uses a three-component working fluid consisting of the refrigerant (ammonia), the absorbent (water) and the auxiliary gas (typically hydrogen). This system has no moving parts and the associated noise and vibration. In this study, the operating characteristics of diffusion absorption refrigerator are investigated through cycle modeling and simulation. System parameters considered in this study are the charged concentration of ammonia aqueous solution, the concentration difference between absorber inlet and outlet and the system pressure determined by the amount of auxiliary gas charged. It was found that there exists a critical value of concentration difference that maximizes the refrigerating capacity. And the lower the system pressure, the higher the refrigerating capacity.

Tracer Concentration Contours in Grain Lattice and Grain Boundary Diffusion

  • Kim, Yong-Soo;Donald R. Olander
    • Nuclear Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.7-14
    • /
    • 1997
  • Grain boundary diffusion plays a significant role in fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission produce such as Xe and Kr generated during nuclear fission have to diffuse in the grain lattice and the boundary inside fuel pellets before they reach the open spaces in a fuel rod. These processes can be studied by 'tracer diffusion' techniques, by which grain boundary diffusivity can be estimated and directly used for low burn-up fission gas release analysis. However, only a few models accounting for the both processes are available and mostly handle them numerically due to mathematical complexity. Also the numerical solution has limitations in a practical use. In this paper, an approximate analytical solution in case of stationary grain boundary in a polycrystalline solid is developed for the tracer diffusion techniques. This closed-form solution is compared to available exact and numerical solutions and it turns out that it makes computation not only greatly easier but also more accurate than previous models. It can be applied to theoretical modelings for low bum-up fission gas release phenomena and experimental analyses as well, especially for PIE (post irradiation examination).

  • PDF

웨어러블용 Nylon-Yarn NOx 가스 센서의 검출 온도 변화에 따른 열 특성 시뮬레이션 (Thermal Characteristics Simulation with Detecting Temperature for the Wearable Nylon-Yarn NOx Gas Sensors)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.321-325
    • /
    • 2020
  • Atmospheric environmental problems have a major impact on human health and lifestyle. In humans, inhalation of nitrogen oxides causes respiratory diseases, such as bronchitis. In this paper, thermal analysis of a gas sensor was carried out to design and fabricate a wearable nylon-yarn gas sensor for the detection of NOx gas. In the thermal analysis method, the thermal diffusion process was analyzed while operating the sensors at 40 and 60℃ to secure a temperature range that does not cause thermal runaway due to temperature in the operating environment. Thermal diffusion analysis was performed using the COMSOL software. The thermal analysis results could be useful for analyzing gas adsorption and desorption, as well as the design of gas sensors. The thermal energy diffusion rate increased slightly from 10.05 to 10.1 K/mm as the sensor temperature increased from 40 to 60℃. It was concluded that the sensor could be operated in this temperature range without thermal breakdown.