• Title/Summary/Keyword: gas combustion unit

Search Result 82, Processing Time 0.027 seconds

Two New Correlations for Predicting Detonating Power of CHNO Explosives

  • Keshavarz, M.H.;Oftadeh, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.19-22
    • /
    • 2003
  • For CHNO explosives, two new correlations of the form $P_{CJ}\;=\;8.7({\alpha}T_c')^{1/2}{\rho}_0^2-5\;and\;P_{CJ}\'=\'9.5({\alpha}T_c')^1/2{\rho}_0^2-9$ have been demonstrated, which relate detonation pressure, $P_{CJ}$; combustion temperature of the explosive in gas phase, $T_c$; combustion temperature of the explosive in crystalline state, $T_c'$; and the number of moles of gaseous products per unit weight of explosive, α; at initial density of the explosive, ${\rho}_0$. Experimental and semi-empirical PM3 procedures were used for the computation of $T_c$. Detonation pressures derived in this manner have a simple form without need to use computer code.

Combustion Characteristics of Waste Sewage Sludge using Oxy-fuel Circulating Fluidized Bed (슬러지 순산소 유동층 연소특성)

  • Jang, Ha-Na;Sung, Jin-Ho;Choi, Hang Seok;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.846-853
    • /
    • 2017
  • Cold bed and $30kW_{th}$ pilot bed tests using circulating fluidized bed (CFB) were conducted to apply oxy-fuel technology for waste sludge combustion as a carbon capture and storage technology. In cold bed test, the minimum fluidization velocity ($u_{mf}$) and superficial velocity for fast fluidization was determined as 0.120 m/s and 2.5 m/s, respectively. In the pilot test, air and oxy-fuel combustion experiments for waste sludge were conducted using CFB unit. The flue-gas temperature in 21~25% oxy-fuel combustion was higher than that of air and up to 30% oxy-fuel combustion. In addition, the concentration of carbon dioxide was more than 80% with the oxygen injection range from 21% to 25% in oxy-fuel CFB waste sludge combustion.

Study on the Characteristics of an Annular Combustor for a 500 W Class Micro Gas Turbine Generator (500 W 급 마이크로 가스터빈 제너레이터용 환형 연소기의 특성에 관한 연구)

  • Do, Kyu Hyung;Kim, Taehoon;Han, Yong-Shik;Kim, Myung-Bae;Choi, Byung-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.14-20
    • /
    • 2014
  • In the present study, an annular combustor for a 500 W class micro gas turbine generator was designed and its characteristics were investigated by using both numerical and experimental methods. For this purpose, geometrical configurations of the annular combustor were determined in the aspect of the aerodynamic and chemical consideration. Also, fluid flow and pressure drop characteristics in the combustor were numerically studied by using commercial tool, FLUENT. Based on the numerical results, the diameter and the angle of air admission holes in the primary zone were chosen to be 2.5 mm and $30^{\circ}$, respectively. Finally, an integrated test unit, which consisted of a compressor, combustor, turbine, and motor/generator, was developed in order to measure the combustor efficiency. As the temperature difference between the combustor inlet and the turbine inlet or the air mass flow rate increased, the combustor efficiency increased and it was over 90% when the air mass flow rate was larger than 7.30 g/s. It was shown that the annular combustor developed in this study met the design requirement for a 500 W class micro gas turbine generator.

An Experimental and Numerical Study on the Characteristics of Devolatilization Process for Coals Utilized in Korea Using CPD Model (CPD 모델을 이용한 국내수입탄 성상에 따른 탈휘발 특성에 관한 실험 및 해석적 연구)

  • Kim, Ryang-Gyoon;Lee, Byoung-Hwa;Jeon, Chung-Hwan;Song, Ju-Hun;Chang, Young-June;Fletcher, Thomas H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.613-621
    • /
    • 2009
  • Coal is the energy resource which is important with the new remarking energy resource. Coal combustion produces more NOx per unit of energy than any other major combustion technology. Pollutant emission associated with coal combustion will have a huge impact on the environment. Coal conversion has three processes which are drying, coal devolatilization and char oxidation. Coal devolatilization process is important because it has been shown that HCN which is converted from volatile N contributes 60 to 80% of the total NOx produced. This paper addresses mass release behavior of char, tar, gas and HCN in an experiment of Laminar Flow Reactor with two coals such as Roto middle coal (Sub-bituminous) and Anglo coal (Bituminous). The experiment is compared with the data predicted by CPD model for mass release of HCN about Roto south, Indominco, Weris creek and China orch coals. The results show that HCN increases as a function of decreasing the ratio of fixed carbon(FC)/ volatile matter(VM of the coals contain.)

A Study on the Optimal Process Design of Cryogenic Air Separation Unit for Oxy-Fuel Combustion (순산소 연소를 위한 초저온 공기분리장치의 최적공정 설계 연구)

  • Choi, Hyeung-Chul;Moon, Hung-Man;Cho, Jung-ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.647-654
    • /
    • 2018
  • In order to solve the global warming and reduce greenhouse gas emissions, it has been developed the $CO_2$ capture technology by oxy-fuel combustion. But there is a problem that the economic efficiency is low because the oxygen production cost is high. ASU (Air Separation Unit) is known to be most suitable method for producing large capacity of oxygen (>2,000 tpd). But most of them are optimized for high purity (>99.5%) oxygen production. If the ASU process is optimized for low purity(90~97%) oxygen producing, it is possible to reduce the production cost of oxygen by improving the process efficiency. In this study, the process analysis and comparative evaluation was conducted for developing large capacity ASU for oxy-fuel combustion. The process efficiency was evaluated by calculating the recovery rate and power consumption according to the oxygen purity using the AspenHysys. As a result, it confirmed that the optimal purity of oxygen for oxyfuel combustion is 95%, and the power consumption can be reduced by process optimization to 12~18%.

Combustion Characteristics of a Premixed Burner in a Stirling Engine for a Domestic Cogeneration System (가정용 열병합 스털링 엔진을 위한 예혼합 버너의 연소 특성)

  • Ahn, Joon;Lee, Youn-Sik;Kim, Hyouck-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.211-216
    • /
    • 2012
  • The availability of thermal energy has been widely recognized recently, and the cascade usage of thermal energy from combustion has been encouraged. Within this framework, a 1-kW-class Stirling-engine.based cogeneration system has been proposed as a unit of a distributed energy system. The capacity has been designed to be adequate for domestic usage, which requires high compactness as well as low emissions and noise. To develop a highly efficient system satisfying these requirements, a premixed slot-type short-flame burner has been proposed, and a series of experiments has been performed to understand its combustion characteristics. Flame images have been captured to observe the dependence of the flame mode on the combustion load and air/fuel ratio. The exhaust gas has been sampled and analyzed to study the emission characteristics for each flame mode.

DESIGN OF ANNULAR REVERSIBLE COMBUSTOR WITH 3 DIMENSIONAL CFD ANALYSIS (3차원 CFD해석을 이용한 환형 역류형 연소기설계)

  • Na, S.K.;Shim, J.K.;Park, H.H.;Lee, S.J.;Chen, S.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.247-251
    • /
    • 2010
  • It is very difficult to understand and estimate the heat transfer and flow characteristics in the combustor, which is one of main components in the Auxiliary Power Unit (APU), because its flow filed has very complex structure. In this paper, specified is characteristics of injection and flow through different air goles in the liner, which consist of large circular holes film cooling holes, and tangential air swirl holes. The durability of the liner depends on whether the surface of the liner is exposed to the hot gas over 1000 $^{\circ}C$ of a temperature or net. It is proved that the locations of hot spots estimated from the calculation using CFD are matched well with that from the test. In this study, CFD simulations were performed to examine the heat transfer and temperature distributions in and about a liner wall with film cooling on the wall. This computational study is based on the ensemble average continuity, compressible Navier-Stokes, energy, and PDF combustion equations closed by the standard $k-{\varepsilon}$ turbulence model with standard wall functions for the gas phase and the Fourier equations for conduction in the solid phase.

  • PDF

Air-Fuel Ratio Control Characteristics of an LPG Engine at Idle (LPG 엔진의 공회전 영역에서 공연비 제어 특성)

  • 심한섭
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.30-35
    • /
    • 1999
  • Since LPG has a higher octane number and a lower maximum combustion temperature than gasoline it is getting more popular for reducing emissions from the vehicle This paper when an LPG engine works in the range of idle analyzed the operating range preciously an provides reducing method of emissions for the LPG engine. An electronic control unit(ECU) for the LPG engine using a feedback mixer is presented. The ECU is built by using a microcontroller MC68HC05. A PI-controller is imple-mented in the ECU in order to handle to handle Air/Fuel ration control. The experimental results exhibit that the required engine performance are satisfied at idle.

  • PDF

Removal of Air Pollutants from Charcoal Production Process Exhaust (숯 제조공정에서 발생하는 대기오염물질의 제거기술)

  • Park, Seong-Kyu;Choi, Sang-Jin;Kim, Daekuen;Hwang, Ui-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.350-361
    • /
    • 2014
  • Exhaust gas containing wood tar of high concentration is discharged from charcoal production kilns. The large amount of emissions are often found by operational failure. The purpose of this study is to investigate the performance of an integrated treatment system in treating charcoal production exhaust. The system, which combined a tar collection device and a post-combustion unit, was proposed to remove moisture, wood tar, particulate matter, and other gas-phase pollutants (CO, $CH_4$, total hydrogen carbons) from exhaust gases. Heat recovery units were also applied in the system to utilize waste heat.

A Study on the Thermal Decomposition of Carbon Tetrachloride by Pyrolytic Incineration (사염화탄소의 열분해 소각에 관한 연구)

  • 이태호;정홍기
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.57-61
    • /
    • 1996
  • This study was to decompose carbon tetrachloride and CFC with pyrolytic incineration unit because of prohibition of their usage sooner or later. We have investigated heating value and temperature versus decomposing rate, removal of $Cl_2$ and dust in the flue gas, The results obtained were as follows; 1. In combustion condition to decompose $CCl_4$ heating value was 3,300Kcal/Kg, retention time was 2,0 sec. incinerator exit temperature was $950^{\circ}C$. 2.The removal of HCI and $Cl_2$ in flue gas used NaOH as reagent, then molar ratio o of $Na^+/Cl^-$ was 1.07. 3. NaCI of dust component was more than 90 %, 2 stage venturi scrubber was used to remove dust, then removal rate of dust was 99% over at L/G of $1.7Vm^3$

  • PDF