• Title/Summary/Keyword: gas chromatography/mass spectrometry

Search Result 985, Processing Time 0.029 seconds

Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng

  • Chen, Jin-Lian;Sun, Shi-Zhong;Miao, Cui-Ping;Wu, Kai;Chen, You-Wei;Xu, Li-Hua;Guan, Hui-Lin;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.315-324
    • /
    • 2016
  • Background: Biocontrol agents are regarded as promising and environmental friendly approaches as agrochemicals for phytodiseases that cause serious environmental and health problems. Trichoderma species have been widely used in suppression of soil-borne pathogens. In this study, an endophytic fungus, Trichoderma gamsii YIM PH30019, from healthy Panax notoginseng root was investigated for its biocontrol potential. Methods: In vitro detached healthy roots, and pot and field experiments were used to investigate the pathogenicity and biocontrol efficacy of T. gamsii YIM PH30019 to the host plant. The antagonistic mechanisms against test phytopathogens were analyzed using dual culture, scanning electron microscopy, and volatile organic compounds (VOCs). Tolerance to chemical fertilizers was also tested in a series of concentrations. Results: The results indicated that T. gamsii YIM PH30019 was nonpathogenic to the host, presented appreciable biocontrol efficacy, and could tolerate chemical fertilizer concentrations of up to 20%. T. gamsii YIM PH30019 displayed antagonistic activities against the pathogenic fungi of P. notoginseng via production of VOCs. On the basis of gas chromatography-mass spectrometry, VOCs were identified as dimethyl disulfide, dibenzofuran, methanethiol, ketones, etc., which are effective ingredients for antagonistic activity. T. gamsii YIM PH30019 was able to improve the seedlings' emergence and protect P. notoginseng plants from soil-borne disease in the continuous cropping field tests. Conclusion: The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good potential as a biological control agent against notoginseng phytodiseases and can provide a clue to further illuminate the interactions between Trichoderma and phytopathogens.

Determination of the volatile flavor components of orange and grapefruit by simultaneous distillation-extraction (연속수증기증류추출법에 의한 오렌지와 자몽의 휘발성 유기화합물 확인)

  • Hong, Young Shin;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.23 no.1
    • /
    • pp.63-73
    • /
    • 2016
  • The volatile flavor components of the fruit pulp and peel of orange (Citrus sinensis) and grapefruit (Citrus paradisi) were extracted by simultaneous distillation-extraction (SDE) using a solvent mixture of n-pentane and diethyl ether (1:1, v/v) and analyzed by gas chromatography-mass spectrometry (GC-MS). The total volatile flavor contents in the pulp and peel of orange were 120.55 and 4,510.81 mg/kg, respectively, while those in the pulp and peel of grapefruit were 195.60 and 4,223.68 mg/kg, respectively. The monoterpene limonene was identified as the major voltile flavor compound in both orange and grapefruit, exhibiting contents of 65.32 and 3,008.10 mg/kg in the pulp and peel of orange, respectively, and 105.00 and 1,870.24 mg/kg in the pulp and peel of grapefruit, respectively. Limonene, sabinene, ${\alpha}$-pinene, ${\beta}$-myrcene, linalool, (Z)-limonene oxide, and (E)-limonene oxide were the main volatile flavor components of both orange and grapefruit. The distinctive component of orange was valencene, while grapefruit contained (E)-caryophyllene and nootkatone. $\delta$-3-Carene, ${\alpha}$-terpinolene, borneol, citronellyl acetate, piperitone, and ${\beta}$-copaene were detected in orange but not in grapefruit. Conversely, grapefruit contained ${\beta}$-pinene, ${\alpha}$-terpinyl acetate, bicyclogermacrene, nootkatol, ${\beta}$-cubebene, and sesquisabinene, while orange did not. Phenylacetaldehyde, camphor, limona ketone and (Z)-caryophyllene were identified in the pulp of both fruits, while ${\alpha}$-thujene, citronellal, citronellol, ${\alpha}$-sinensal, ${\gamma}$-muurolene and germacrene D were detected in the peel of both fresh fruit samples.

Removal of Off-flavor from Laminaria Japonica by Treatment Process of Supercritical Carbon Dioxide (초임계 이산화탄소 처리 공정에 의한 다시마 유래 이취성분 제거)

  • Park, Jung-Nam;Kim, Ryoung-Hee;Woo, Hee-Chul;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.191-199
    • /
    • 2012
  • In order to reduce or remove off-flavor and volatile organic compounds (VOCs) from Laminaria japonica effectively, continuous treatment process by supercritical carbon dioxide (SC-$CO_2$) was applied. After freeze-drying, Laminaria japonica powdered with $710{\mu}m$ was used. Experiments were carried out at temperature range from 35 to $55^{\circ}C$, and pressure range from 10 to 25 MPa for evaluation of SC-$CO_2$ treatment effect. Flow rate of carbon dioxide used in this reseach was constantly fixed at 26.81 g/min. Before and after treatment of SC-$CO_2$, off-flavor and VOCs from Laminaria japonica were analyzed by gas chromatography-mass spectrometry detector (GC-MSD). Total 47 VOCs emitted from Laminaria japonica were identified before treatment of SC-$CO_2$, major components of seaweed smell (ordor) in Laminaria japonica were identified as alcohols, aldehydes, ester and acids, ketone, halogenated compounds and hydrocarbon. Off-flavor and VOCs in all experimental conditions was reduced or removed after SC-$CO_2$ treatment. Among the experimental conditions, the highest removal yield was at 25 MPa and $55^{\circ}C$.

Camphor Inhibits Adipocyte Differentiation via Its Impact on SMO-dependent Regulation of Hedgehog Signaling (Camphor의 Hedgehog 신호 SMO 조절을 통한 지방구세포 분화 억제효과)

  • Choi, Jae Young;Lim, Jong Seok;Lee, Ja Bok;Yang, Yung Hun
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.973-982
    • /
    • 2020
  • In this study, we examined inhibition of adipocyte differentiation associated with the administration of camphor, a substance identified in extracts of the flowering plant Chrysanthemum indicum L. (CI). No camphor-mediated cytotoxicity was observed over a period of 1-10 days in studies targeting cells of the 3T3-L1 adipocyte-like line. Experiments that featured siRNA-mediated suppression of the transmembrane proteins Patched (PTCH) and Smoothened (SMO) resulted in inhibition and activation of differentiation, respectively. Interestingly, inhibition of PTCH typically activates SMO protein targeting and serves to activate hedgehog (HH)-mediated signaling. The results of our study suggest that activation of HH-mediated signaling can inhibit adipocyte differentiation. Furthermore, expression of glioma-associated oncogene homologue 1 (Gli1) was detected by flow cytometry in 62.7±1.5% of cells in response to administration of Lactobacillus rhamnosus (KCTC 3237) and in 60.4±2.2% of cells in response to camphor; these levels are higher than those detected in undifferentiated controls (24.9±3.1%). No change in the state of fermented camphor was identified by gas chromatography-mass spectrometry (GC-MS), but a 15.41% quantitative increase was confirmed in KCTC 3237. Overall, we conclude that administration of camphor resulted in overexpression of SMO and modulated the differential expression of Gli1. Animal studies focused on the impact of camphor as an agent to counteract obesity might be considered in the future. Indeed, camphor and similar physiologically active compounds from fermented CI might be developed as new and effective treatments for obesity.

Identification of Irradiation-induced Volatile Flavor Compounds in Beef (방사선 조사 쇠고기에서의 휘발성 조사물질의 구명)

  • Cha, Yong-Jun;Kim, Hun;Park, Sung-Young;Kim, So-Jung;You, Young-Jae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1042-1049
    • /
    • 2000
  • Irradiation-induced volatile flavor compounds in irradiated (1, 3, 5, 10 kGy) beef were analyzed by liquid liquid continuous extraction (LLCE) and gas chromatography/mass spectrometry (GC/MS) methods. One hundred fifty volatile compounds were detected in irradiated beef. These compounds were composed mainly of 71 hydrocarbons, 35 aromatic compounds, 15 aldehydes, 7 ketones, 4 acids, 6 esters and 12 miscellaneous compounds. Among these, only 6 volatile compounds including (E) -2-hexenal, nonene, 2-nonenal, cyclodecene, dodecene and cyclododecene were detected as irradiation-induced volatile flavor compounds, comparing with unirradiated beef meat. However, 4 volatile compounds, such as cyclodecene (r=0.88), (E)-2-hexenal (r=0.85), nonene (r=0.74) and 2-nonenal (r=0.70), having a positive correlation coefficient with the increment of irradiation dose, were considered as marker compounds for detecting irradiation dosages in irradiated beef.

  • PDF

Formation of Volatile Compounds by the Thermal Degradation of ${\beta}-Carotene$ (${\beta}-Carotene$의 열분해(熱分解)에 의한 휘발성(揮發性) 화합물(化合物)의 생성(生成))

  • Park, Joon-Yung;Kim, Ok-Chan;Kim, Young-Hoi
    • Applied Biological Chemistry
    • /
    • v.29 no.3
    • /
    • pp.260-265
    • /
    • 1986
  • Thermal degradation of ${\beta}-carotene$, major carotenoid present in cured tobacco leaves, were carried out at $400,\;600,\;and\;800^{\circ}C$ which are similar to temperatures existing in the combustion zones of cigarettes, and subsequent volatile degradation products were analyzed by combined gas chromatography-mass spectrometry. The volatile compounds identified from degradation products included 36 aromatic hydrocarbons, 10 ${\beta}-ionone-related$ compounds which have trimethylcyclohexane ring, and 7 others. Of these, 37 compounds including ${\beta}-cyclogeraniol$ had not been previously reported in the literature as thermal degradation products of ${\beta}-carotene$. The major compounds of degradation products at $400\;and\;600^{\circ}C$ were ${\beta}-xylene,\;{\alpha}-terpinene,\;{beta}-cyclocitral,\;ionene\;(1,2,3,4-tetrahydro-1,1,6-trimethyl\;naphthalene),\;{\beta}-ionone$, and dihydroactinidiolide. The major compounds at $800^{\circ}C$ were the above six compounds plus toluene.

  • PDF

Studies on Photosensitized Oxidation in the Lipids of Irish moss, Laver and Oyster (진두발, 김 및 굴의 지질에 있어서 광증감 산화에 관한 연구)

  • KIM Kui-Shik;KOIZUMI Chiaki;BAE Tae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.355-360
    • /
    • 1997
  • In order to investigate the influence of photosensitized oxidation in the sun-dried irish moss (Chondrus Ocellatus), laver (Porphyra Yezoensis) and ultra violet irradiated oyster (Crassostrea gigas) the oxidation of lipid and isomers of hydroperoxides were analyzed by gas chromatography-mass spectrometry. The lipid contents of oyster, irish moss and layer were $2.7\%,\;0.1\%,\;0.1\%$ of respectively. Peroxide value, 56,7 meq/kg in the raw oyster was increased of 100.9 meq/kg by the U.V, irradiation for 4 hours. Also the peroxide values of the irish moss and laver were increased by the sun-drying. In the identification of hydroperoxides isomers by trimethylsily (TMS) derivative of photo-oxidized lipid from oyster, irish moss and laver, the proportions of positional isomer, 9-OOH and 13-OOH were dominant than those 10-OOH and 12-OOH.

  • PDF

Changes in Organic acids, Free Sugars, and Volatile Flavor Compounds in Fig (Ficus carica L.) by Maturation Stage (무화과의 성숙도에 따른 유기산, 유리당 및 향기 성분의 변화에 관한 연구)

  • Shin, Tai-Sun;Park, Jin-A;Jung, Bok-Mi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.7
    • /
    • pp.1016-1027
    • /
    • 2015
  • This study collected 120 figs, classified them into six degrees of maturity according to hardness values, and analyzed contents of organic acids and free sugars. Volatile compounds in figs were investigated using the solid-phase microextraction method of gas chromatography/mass spectrometry. For measurement of texture, elasticity increased up to stage 4 and decreased again. Cohesiveness and brittleness increased with maturation. Organic acids in figs were mainly composed of citric acid, malic acid, and tartaric acid in the final stage. Fructose and glucose were the major sugar components of figs. Fructose content decreased from stage 1 to stage 4 and then increased significantly. One hundred and nineteen volatile compounds were identified in figs, and classes were 14 acids, 15 alcohols, 23 aldehydes, 10 esters, 33 hydrocarbons, 11 ketones, four aromatics, six miscellaneous, and five terpenes. The dominant volatile components in figs were hexadecanoic acid, hexane, dodecanal, DL-limonene, 2-hexanal, nonanal, and 6-methyl-5-hepten-2-one.

Comparison of Volatile Compounds Identified in Different Parts of Peucedanum japonicum Thunberg by Harvest Time (방풍나물의 수확시기에 따른 부위별 향기성분 비교 분석)

  • Jung, Bok-Mi;Shin, Tai-Sun;Heo, Young-Ran
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.12
    • /
    • pp.1871-1880
    • /
    • 2014
  • Headspace volatile compounds of leaf, stem, and root of Peucedanum japonicum Thunberg (PJT) harvested in March and July were isolated, separated, and identified by using a combined system of solid phase microextraction and gas chromatography/mass spectrometry. Identified numbers of volatile compounds were 72, 75, and 63 in March PJT as well as 78, 73, and 69 in July, respectively. Total compounds identified from PJT consisted of alcohols (1~7), aldehydes (7~15), esters (1~4), hydrocarbons (5~9), ketones (1~2), monoterpenes (13~16), monoterpene alcohols (1~5), monoterpene aldehydes (2~4), monoterpene esters (1~4), monoterpene ketones (1~2), sesquiterpenes (16~24), and miscellaneous compounds (2~3). Major volatile compounds of PJT were monoterpenes at all harvest times and in all parts of PJT. The amounts of ${\beta}$-pinene in leaf and stem harvested in March were highest in monoterpenes, followed by ${\alpha}$-pinene and ${\beta}$-myrcene. However, amounts of volatile compounds of monoterpenes in leaf and stem from July PJT were in the decreasing order of ${\beta}$-pinene, ${\beta}$-phellandrene, and ${\beta}$-myrcene. Of the 39 sesquiterpenes identified in PJT, (E)-caryophyllene in March leaf was the most abundant volatile compound, followed by acoradiene in March leaf, ${\beta}$-elemene, and ${\alpha}$-copaene in July stem.

Identification of the Volatile Components in Korean Ordinary Kochujang (한국재래식(韓國在來式) 고추장의 향기성분동정(香氣成分同定))

  • Ahn, Cheol-Woo;Kim, Jong-Kyu;Sung, Nack-Kie
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.3
    • /
    • pp.27-34
    • /
    • 1987
  • The present paper was attempted to obtain the basic date concerning a reasonable preparing method and optimum fermentation conditions of Kochujang (Red pepper paste). To establish the standard quality of Kochujang, the chemical compositions and the volatile components of Kochujang was discussed. The native Kochujang collected from 80 households contained 40.51% of moisture, 6.00% of salts, 3.25 % of crude fat, 10.30 % of crude ash, pH 4.79, 9.28ml of tillable acidity. 19.60% of reducing sugar, 179.51 mg/100g of amino nitrogen and 4.43% of total nitrogen. The volatiles of Kochujang were extracted by a steam-distillation under the reduced pressure and determined by gas chromatography-mass spectrometry (GC-MS). Total volatile components identified in the native Kochujang were 46 components, i. e., 30 components in neutral fraction, 8 components in phenolic fraction and 8 components in acidic fraction, respectively. But no components were detected basic fraction.

  • PDF