• Title/Summary/Keyword: garnet powder

Search Result 40, Processing Time 0.024 seconds

Photoluminescence Characteristics of $Y_3Al_5O_{12}:Eu^{3+}$ Nano-Phosphors by Combustion Method (연소합성법으로 제작한 $Y_3Al_5O_{12}:Eu^{3+}$ 나노형광체의 광학적 특성)

  • Kwak, Hyun-Ho;Kim, Se-Jun;Park, Yong-Seo;Choi, Hyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.406-407
    • /
    • 2008
  • For this study, Yttrium aluminum garnet (YAG) particles doped $Eu^{3+}$ ions were prepared via the combustion process using the 1:1 ratio of metal ions to reagents. The characteristics of the synthesized nano powder were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and photoluminescence (PL). The various YAG peaks, with the (420) main peak, appeared at all sintering temperature XRD patterns. The YAG phase crystallized with results that are in good agreement with the JCPDS diffraction file 33-0040. The SEM image showed that the resulting YAG:Eu powders had larger sizes with the increse in the sintering temperature. The grain size was about 50nm at $1000^{\circ}C$. The PL intensity of $Eu^{3+}$ has the line peaks of 598, 610, 632nm and has main peak at 591nm.

  • PDF

Preparation of Y3Al5O12 Nanocrystals by a Glycol Route

  • Bartwal, Kunwar Singh;Kar, Sujan;Kaithwas, Nanda;Deshmukh, Monica;Dave, Mangla;Ryu, Ho-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.5 s.300
    • /
    • pp.151-154
    • /
    • 2007
  • Yttrium aluminum garnet, $Y_3Al_5O_{12}$ (YAG) is an extensively used solid-state laser host material. YAG nanocrystals were synthesized using low-temperature glycol method, a modified sol-gel method performed at low temperature that consists of a mixture of salts that are mostly nitrates in an aqueous media. Single-phase nanocrystalline YAG was obtained at $850^{\circ}C$, which is a much lower temperature than with other techniques such as a wet-chemical technique. The structural characterization is done by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. A crystallite size range of 20-50 nm was observed for the materials prepared at $850-950^{\circ}C$.

Synthesis and Magnetic Properties of Nanosized Ce-substituted Yttrium Iron Garnet Powder Prepared by Sol-gel Method (졸-겔법에 의한 Cerium 치환 Nanosize YIG 분말의 합성 및 자기적 특성)

  • 장학진;김광석;윤석영;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1008-1014
    • /
    • 2001
  • Nanosize YIG powders added by Cerium which is exellent element in magneto-optical effect were synthesized by Sol-Gel method using Ethylene Glycol solvent. In 120 to 150 minute reaction time, stable sol solution which showed no change in viscosity, pH, and aging time was obtained. Monolithic YIG was synthesized at 80$0^{\circ}C$ with DTA and XRD measurement and its lattice parameter had a tendency to increase from 12.3921 $\AA$. Increasing annealing temperature from 80$0^{\circ}C$ to 105$0^{\circ}C$, average particle size was in the range of 40 nm to 330 nm. Saturation magnetization (M$_{s}$) value was increased from 18.37 to 21.25 emu/g due to enhancement of YIG crystallity and decreasing of orthoferrite phase. On the other hand, coercivity (H$_{c}$) value increased up to 90$0^{\circ}C$ and then decreased above 90$0^{\circ}C$. With increasing Ce addition, coercivity was almost not changed but saturation magnetization value was maximum at Ce 0.1 mol% and then decreased because of increasing a orthoferrite amount. Also, curie temperature (T$_{c}$) of YIG were not changed with Ce addition.ion.

  • PDF

Effect of $\alpha-SiC $seed on microstructure and fracture toughness of pressureless-sintered $\beta-SiC$ ($\alpha-SiC $seed의 첨가가 상압소결된 $\beta-SiC$의 미세구조와 파괴인성에 미치는 영향)

  • Young-Wook Kim;Won-Joong Kim;Kyeong-Sik Cho;Heon -Jin Choi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.18-26
    • /
    • 1997
  • $\beta-SiC $powder with or without the addition of 1 wt% of $\alpha-SiC$ particles (seeds) was pressureless-sintered at $1950^{\circ}C$ for 0.5, 2 and 4 h using $Y_3Al_5O_{12}$ (yttrium aluminum garnet, YAG) as a sintering aid. The introduction of $\alpha-SiC$ seeds into $\beta-SiC$ accelerated :he grain growth of elongated large grains during sintering, resulting in the coarser microstructure. The fracture toughnesses of materials with $\alpha$-SiC seeds and without $\alpha-SiC$ seeds sintered for 4 h were 7.5 and 6.1 $MPa\cdot \textrm m^{1/2}$, respectively. Higher fracture toughness of the material with seeds was due to the enhanced bridging by elongated grains, resulting from coarser microstructure.

  • PDF

Effects of Annealing Temperature on the Properties of Solid Phase Epitaxy YIG Films (열처리온도가 고상에피택시 YIG박막의 특성에 미치는 영향)

  • Jang, Pyung-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.221-225
    • /
    • 2003
  • Effects of annealing temperature on the crystalline and magnetic properties of YIG films grown by solid phase epitaxy. The eptiaxy films were made by annealing Fe-Y-O amorphous films in the air at 550-1050 $^{\circ}C$ which were sputtered on GGG (111) substrates in a conventional rf sputtering system. Crystallization temperature of Fe-Y-O amorphous films on GGG (111) substrate was between 600 and 650 $^{\circ}C$ which is much lower than that Fe-Y-O powder prepared by sol-gel method. Excellent epitaxial growth of YIG films could be conformed by the facts that the diffraction intensity of YIG (888) plane was comparable with that of GGG (888) plane and full width at half maximum of YIG (888) rocking curve was smaller than 0.14$^{\circ}$ when films were annealed at 1050 $^{\circ}C$. It could be seen that it is necessary to anneal the films at higher temperature for an excellent epitaxy because lattice parameter of YIG films were smaller and the peak of YIG (888) plane is higher and narrower with increasing annealing temperature. Films annealed at higher temperature shows M-H loop with perpendicular anisotropy which was due to 0.15% lattice mismatch between YIG and GGG.

Photoluminescence Characteristics of $Y_3Al_5O_{12}:Ce^{3+},Eu^{3+}$ Phosphors by $Eu^{3+}$ ions ($Eu^{3+}$ 농도에 따른 $Y_3Al_5O_{12}:Ce^{3+},Eu^{3+}$ 형광체의 광학적 특성)

  • Kwak, Hyun-Ho;Kim, Se-Jun;Park, Yong-Seo;Choi, Hyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.441-442
    • /
    • 2008
  • For this study, Yttrium aluminum garnet (YAG) particles co-doped with $Ce^{3+}$ and $Eu^{3+}$ were prepared via the combustion process using the 1:1 ratio of metal ions to reagents. The characteristics of the synthesized nano powder were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and photoluminescence (PL). The various YAG peaks, with the (420) main peak, appeared at all Eu concentrationin XRD patterns. The YAG phase crystallized with results that are in good agreement with the JCPDS diffraction file 33-0040. The SEM image showed that the resulting YAG:Ce,Eu powders had uniform sizes and good homogeneity. The grain size was about 50nm. The photoluminescence spectra of the YAG:Ce,Eu nanoparticles were investigated to determine the energy level of electron transition related to luminescence processes. It was composed a broad band of $Ce^{3+}$ activator into the weak line peak of $Eu^{3+}$ in YAG host. The PL intensity of $Ce^{3+}$ has the wavelengths of 480-650 nm and The PL intensity of $Eu^{3+}$ has main peak at 590nm.

  • PDF

Change in Microstructure with the Gas Quenching Rate during Austempering Treatment of SAE 1078 Steel (SAE 1078 강의 오스템퍼링 열처리시 가스 퀜칭 속도에 따른 미세조직의 변화)

  • Gi-Hoon Kwon;Hyunjun Park;Kuk-Hyun Yeo;Young-Kook Lee;Sang-Gweon Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.121-127
    • /
    • 2023
  • When high carbon steel is heated in an appropriate austenizing temperature range and subjected to austempering, the size and shape of lamellar structure can be controlled. The high carbon steel sheet having the pearlite structure has excellent elastic characteristics because it has strong restoring force when properly rolled, and is applied in a process known as patenting-process using lead bath. In the case of isothermal treatment using lead-medium, it is possible to quickly reach a uniform temperature due to high heat transfer characteristics, but it is difficult to replace it with process technology that requires treatment to remove harmfulness lead. In this study, we intend to develop fluidization technology using garnet powder to replace the lead medium. After heating the high-carbon steel, the cooling rate was changed by compressed air to the vicinity of the nose of the continuous cooling curve, and then maintained for 90 s and then exposed to room temperature. The microstructure of the treated specimens were analyzed and compared with the existing products treated with lead bath. The higher the flow rate of compressed air, the faster the cooling rate to the pearlite transformation temperature, so lamellar spacing decreases and the hardness tends to increase.

Gemological Characterization of B. C. Jade (비씨 제이드의 보석학적 연구)

  • Kim, Won-Sa;Wight, Willow
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.177-182
    • /
    • 2008
  • The Gemological characteristics of B.C. jade from Cassiar Mine, British Colombia, Canada, have been investigated, using polarizing microscopy, Mohs' hardness, refractive index and density measurements, X-ray powder diffraction, X-ray fluorescence spectrometry, ICP-MS, Infrared absorption spectrometry, and DTA/TGA. The B.C. jade is deeply green (spinach peen or olive green) in color and is translucent. It shows a resinous or waxy luster. The principal mineral of the material is tremolite-actinolite solid solution and minor amount of Cr-garnet and unidentified opaque minerals are accompanied. Mohs' hardness value ($5.5{\sim}6$). refractive index (1.62), and specific gravity (3.01) are measured. It is very highly tough and shows hackly fracture. The high Fe content ($Fe_2O_3\;4.14{\sim}4.66\;wt%$) in B.C. jade is attributable to a deepening of green color of the material. The B.C. jade starts to dehydrate at v and dehydration is completed at $1000.8^{\circ}C$, transforming tremolite-actinolite solid solution to enstatite, diopside, quartz, and water in its place. This possible reaction is supported by the weight loss of B.C. jade (1.93 wt%) at $1000.8^{\circ}C$ indicated by TGA curve.

A Study of the Personal Ornaments and Make-up of Maroccan (모로코인(人)의 장신구(裝身具)와 화장(化粧)에 관(關)한 연구(硏究))

  • Lee, Soon-Hong
    • Journal of Fashion Business
    • /
    • v.5 no.2
    • /
    • pp.15-34
    • /
    • 2001
  • Ornaments are accessories for the decoration of the body or dress. They aren't unavoidably required one, but serve to make one's dress perfect as decorative industrial art objects. In Morocco, ornaments were initially used as a sign of social position or the class or an incantatory symbol. In effect, they were originally employed to adjust one's dress, not just for decoration, and they were of use for household economy. Gold, silver and handcraft available for exchange were a means of increasing one's property and an indication of social standing and wealth. In particular, the dress and jewelry of a bride was a measure of her family's wealth, regarded as a symbol of her chastity and value. The ornaments symbolically back up people's faith in supernatural power, and their real value is based on implicit form or way of decoration, not the external shape. Specifically, there is a tendency to use the form of animal as a protector, not one to frighten people. In the artistic tradition of Morocco, fish pattern stands for water and rain, and eagle and bird are considered to be related to fate. Scorpion and lizard are depicted as an inquirer of sun, and snake is a symbol of abundance and sexual instinct, being viewed to have an ability to cure disease. Turtle pattern is a symbol of saint because it protects one from the evil. The ornaments are made of gold, silver, amber, clam, garnet, glass, nielle, enamel, glaze, coral or tree, and symbolic patterns are used, including hand(a symbol of five numerals), turtle, lizard, scorpion, eye, triangle, bird and eggs. They are very big and diverse, being categorized into ornaments for the head or the chest, neckless, fibula, earring, bracelet and ring. For Moroccans, make-up is a sort of instinctive behavior to meet aesthetic and sexual desire. They also wear make-up for practical purpose of protection, intentionally inflict a wound on the skin for ceremonial or religious purpose, paint the skin with pigment, or have the part of the body tattooed for incantatory purpose. All this actions are regarded as make-up. The raw material of cosmetics is aker, a vegetable dye. They get the lips or cheeks turn red and paint eyebrows with yellow saffran powder to have a bad devil lose its strength. Tattooing is mainly done by women and viewed as a sign of their value or social organization they belong to. Sometimes that is used to represent a woman's being old enough to marry or getting married already or the frequency of marriage. Besides, tattoo is believed to prevent or remedy loose bowels or cough, depending on its location or pattern, and they often change tattoo according to the change of beauty art.

  • PDF

Pressure-load Calibration of Multi-anvil Press and the Thermal Gradient within the Sample Chamber (멀티 앤빌 프레스의 압력-부하 보정 작업과 시료 내의 온도구배 연구)

  • Kim, Eun Jeong;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.161-172
    • /
    • 2018
  • Multi-anvil press (MAP) is one of the high pressure apparatuses and often generates the pressure-conditions ranging from 5 to 25 GPa and temperature-conditions up to $2,300^{\circ}C$. The MAP is, therefore, suitable to explore the pressure-induced structural changes in diverse earth materials from Earth's mantle and the bottom of the mantle transition zone (~660 km). In this study, we present the experimental results for pressure-load calibration of the 1,100-ton multi-anvil press equipped in the authors' laboratory. The pressure-load calibration experiments were performed for the 14/8 step, 14/8 G2, 14/8 HT, and 18/12 assembly sets. The high pressure experiments using ${\alpha}$-quartz, wollastonitestructure of $CaGeO_3$, and forsterite as starting materials were analyzed by powder X-ray diffraction spectroscopy. The phase transition of each mineral indicates the specific pressure that is loaded to a sample at $1,200^{\circ}C$: a transition of ${\alpha}$-quartz to coesite at 3.1 GPa, that of garnet-structure of $CaGeO_3$ to perovskite-structure at 5.9 GPa, that of coesite to stishovite at 9.2 GPa, and that of forsterite to wadsleyite at 13.6 GPa. While the estimated pressure-load calibration curve is generally consistent with those obtained in other laboratories, the deviation up to 50 tons is observed at high pressure above 10 GPa. This is partly because of the loss of oil pressure at high pressure resulting from the differences in a sample chamber, and the frictional force between pressure medium and second anvil. We also report the ${\sim}200^{\circ}C/mm$ of thermal gradient in the vertical direction of the sample chamber of 14/8 HT assembly. The pressure-load calibration curve and the observed thermal gradient within the sample chamber can be applied to explain the structural changes and the relevant macroscopic properties of diverse crystalline and amorphous earth materials in the mantle.