• Title/Summary/Keyword: garment pressure

Search Result 73, Processing Time 0.028 seconds

Selection of the Measurement Points for Garment Pressure of the Girdle and the All-in-one (거들과 올인원의 의복압 측정부위 선정에 관한 연구)

  • Baek, Yoon-Jeong;Choi, Jeong-Wha
    • The Korean Journal of Community Living Science
    • /
    • v.18 no.4
    • /
    • pp.609-616
    • /
    • 2007
  • This study was to select the measurement points of the girdle and the all-in-one. 15 subjects (age 30-40) were chosen by % body fat to represent various physical types. Subjects tried on each garment; a girdle and a all-in-one, in turns. Measurement points in the underwear were selected according to the parts of the human body. The characteristics and the surface area of the each garment were considered carefully when the measurement points were selected. Selected measurement points on the girdle and the all-in-one were chosen from the anterior midsagittal line, the side-seam line, and the posterior midsagittal line. Four points on the girdle and four points on the all-in-one were selected as the measurement points. There was highly significant correlation between % body fat and mean garment pressure. There was no significant relationship between thickness of subcutaneous fat and mean garment pressure by measured parts.

  • PDF

Analysis of clothing pressure for commercially customized burn patient's medical compression garments for men in their 20s (시판 맞춤형 화상환자 압박복의 의복압 분석 -20대 남성 상의를 대상으로-)

  • Cho, Shin-Hyun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.4
    • /
    • pp.55-67
    • /
    • 2019
  • This study analyzed the fabric and product size of the burn patient's custom compression garment and measured the pressure applied by the garment to assess whether proper pressure is being delivered for treatment. The test clothes were presented to the market by body size and commissioned with the same design. The subjects selected four people close to the average body size of men in their 20s determined by 7th Size Korea. The experiment was conducted by wearing a compression suit, performing activities and measuring changes in the pressure of the garment according to changes in posture. The fabric used for the compressive clothing was not ruptured even at 216 kPa, the elasticity recovery rate was measured between 80.5 and 94.5%. The product dimensions of the experimental clothing varied by up to 8cm from brand to brand, requiring the standardization of compression clothing. The experiment showed that four types of compression suit varied in pressure, and the pressure range, excluding the gastric arm (17.9mmHg), was between 2.5-14.1mmHg, which failed to meet the level of pressurization for treatment purposes. The clothing pressure in the chest area dropped when performing movements rather than standing still. This was interpreted to be a result of reduced the adhesion of the compression suit during operation. The peak pressure (31.68mmHg) and the lowest pressure (2.2mmHg) was noted in the scapula, indicating that no pressure was being transmitted on the vertebrae. The pressure of the garment on the right shoulder blade was elevated in a supine position. Because much time is spent laying down, it is necessary for the pattern design to accommodate for the increased clothing pressure on the shoulder blades. Standardization of the level of pressurization for burn patient's custom-made pressure suits for each stage of treatment is urgently required.

Utilization of 3D Virtual Garment Simulation Program Proposed for the Evaluation of Movement Fitness - Focusing on the Men's Jean Pants - (동작 적합성 평가를 위한 3차원 가상착의 프로그램 활용 방안 - 남성 진 팬츠를 중심으로 -)

  • Kim, Kyung-A;Uh, Mi-Kyung;Hong, Eun-Hee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.4
    • /
    • pp.55-66
    • /
    • 2015
  • The objective of this study is to propose a method by which movement fitness can be evaluated using a three-dimensional virtual garment simulation program. To this end, five types of jean pants for men were evaluated on the program by setting the avatars to make particular movements to examine the level of pressure on each body part. To verify whether the clothing pressure measurement produces valid and reliable results, virtual garment simulation program was utilized. The results indicated that there were significant differences in the levels of pressure on body parts depending on the type of test garment and motion. In addition, the clothing pressure measurement results were in line with the appearance evaluation results suggested by a previous study. Based on this set of results, the nomological validity of the clothing pressure measurement program used in this study was verified. Moreover, we employed an appearance evaluation along with the clothing pressure measurement to verify the reliability of the program; there was a high correlation between clothing pressure measurements and appearance evaluation measurements, indicating that measuring clothing pressures may well compensate for the limitations of appearance evaluation. We expect the results of this study to make valuable contributions in facilitating the digitalization of the fashion industry. Furthermore, this study also is significant in that it has suggested 3D virtual fitting programs as a solution to the long-criticized problem related to the evaluation of movement fitness in existing virtual garment simulation programs.

  • PDF

Product development through fit evaluation of yoga tops (착용성 평가를 통한 요가복 상의 개발)

  • Zhang, Cheng;Kim, Jihyeon;Na, Mihyang
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.3
    • /
    • pp.366-380
    • /
    • 2022
  • This study aims to develop the designs and patterns of yoga tops that are better adjusted to suit females in their 30s and 40s. After conducting a comparative analysis of three different popular yoga garments, one yoga top currently on the market was selected. Subsequently, a fit evaluation was conducted on Trail 1-garment α, which was developed body analysis performed based on selected yoga top C, followed by the production of the Trial 2 garment after making adjustments according to the comparative observation results. Based on these results, garment C with the longest top length was evaluated as the best. The results of the evaluation of appearance and fit conducted of Trial 1-garment α compared to those of C showed that Trial 1-garment α was superior in both evaluations. Trial 2-garment β was produced after making improvements on Trial 1-garment α and then placed under identical comparative evaluation condition as Trial 1-garment α. Results showed a significant improvement compared to Trial 1-garment α, and the Trial 2 garment with an additional arm pattern was shown to be superior in shoulder strap width stability, shoulder strap pressure, chest stability, degree of waist pressure, waist comfort, general fitting, and supportiveness.

Comparison of evaluation methods for measuring pressure of compressionwear (컴프레션웨어의 압박감 측정 방법 비교 연구)

  • Park, Jee Hye;Chun, Jongsuk
    • The Research Journal of the Costume Culture
    • /
    • v.21 no.4
    • /
    • pp.535-545
    • /
    • 2013
  • The aim of this study was comparing measuring tools for detecting physical comfortness with variation of garment pressure. The measuring tools for detecting physical comfortness were EEG and survey questionnaire. Two low-pressure compressionwears and a commercial compressionwear (girdle) were tested. Results showed that the questionnaire survey well detected suffocation or motion comfortness. But it did not discrete the appropriate tightness of the compressionwears. The results of EEG analysis show that the absolute power of ${\alpha}$-wave value was elevated with the low-pressure compressionwears. It also showed lower stress value. The high-pressure compressionwear presented decreased absolute power of ${\alpha}$-wave value. It showed higher stress value. These results implicate that EEG can appropriatly indicate the change of physical comfortness of compressionwear. The appropriate tightness of compressionwear can be measured with EEG analysis rather than survey questionnaire.

Reliability Verification of the Clothing Pressure Meter Utilizing the Arduino Board (아두이노 활용 의복압 측정기 제작 및 신뢰도 검증)

  • Kim, Nam Yim;Park, Gin Ah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.5
    • /
    • pp.723-740
    • /
    • 2022
  • This study aimed to develop an Arduino-based garment pressure device (APD) on the basis of using Single-Tact sensor by suggesting the reliable clothing pressure range and coefficient of selected sensors through the APD calibration process. Once the APD was validated, the pressure of the experimental men's lower body compression wears was measured using the APD and was compared to the pressure measured using the existing air-pack type pressure meter. The subjects were one mannequin and eight men in their 20's, and the trial compression wears were calf sleeves and pants. Clothing pressures were measured in hip, mid-thigh, calf, and ankle. In terms of the 99% confidence level, the experimental clothing pressure measured at the designated measuring points using the APD was considered identical to the one measured using an existing clothing pressure meter. Therefore, on the basis of the experiment results, this study demonstrated that the APD is as reliable as the existing clothing pressure meter within the pressure ranges of 0.54-16.79 kPa and 0.18-25.47 kPa as provided by the SingleTact sensor supplier's data on the basis of using an external ADC (Analog to Digital Converter) module.

Wearing of a Whole-Body Compression Garment Can Enhance Exercise Efficiency

  • Jeon, Su-Jeong;Jung, Yu-Jin;Lee, Eun-Jae;Choi, Ji-Hye;Jung, Dongju
    • Biomedical Science Letters
    • /
    • v.27 no.2
    • /
    • pp.88-94
    • /
    • 2021
  • A whole-body compression garment (WBCG) is mainly used for cosmetic purpose in Korea. Another case for wearing the WBCG would be while exercising because it allows the body to move easily. But physiological effects of wearing WBCG to the body have not been known much. To investigate whether wearing WBCG would be helpful for conducting exercises, we measured physiological criteria, which could be influenced by the compression, such as cardiovascular and pulmonary function. Twelve female college students participated in this experiment. Increase of blood pressure was monitored in all of the participants when they wore a WBCG just for 10 minutes. Pulmonary function that requires skeletal muscle contraction was decreased by wearing a WBCG. Blood pressure measured after conducting exercise became even lower when wearing a WBCG than non-wearing. Interestingly, heart pulse remained lower when wearing a WBCG than non-wearing during the whole relaxing period after the exercise. Electrocardiogram (ECG) analyses showed that such lower heart rate largely depended on extension of QT time. For that reason, physiological efficiency index (PEI) was higher for wearing WBCG. These results indicate wearing WBCG could enhance exercise efficiency by lowering heart pulse.

Exploring Variables Affecting the Clothing Pressure of Compression Garment -A Comparison of Actual Garments and Virtual Garments- (밀착의복 의복압에 영향을 미치는 변인 탐색 -실제착의와 가상착의 비교-)

  • Nam Yim Kim;Hyojeong Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.6
    • /
    • pp.1080-1095
    • /
    • 2023
  • Three-dimensional virtual fitting has become a trending practice in the fashion industry because of its productivity benefits, allowing garments to be virtually worn by avatar models without physical production. This study analyzed the variables influencing clothing pressure in both real and virtual fittings to expand the potential utility of pressure data derived from the latter. For this purpose, six sets of compression garments were created by combining two types of tricot fabrics and three types of reduced-pattern tops, with the clothing for real and virtual fittings having identical dimensions. Focus was directed to analyzing the correlation among clothing pressure, surface area deformation, and the mechanical properties of the fabrics. In real fittings, clothing pressure was influenced by multiple factors, including garment design, pattern reduction ratio, body shape, and fabric properties, consistent with existing knowledge. In virtual fittings, however, only the digital mechanical characteristics of the fabrics significantly influenced clothing pressure. The findings suggest that a more reliable implementation of clothing pressure in virtual fitting programs necessitates an approach that considers the complex structural information of garments.

Selection and Design of Functional Area of Compression Garment for Improvement in Knee Protection (무릎 안전성 향상을 위한 컴프레션 의복의 기능적 디자인 영역 선정과 설계법)

  • Lee, Hyo Jeong;Kim, Nam Yim;Hong, Kyung Hi;Lee, Ye Jin
    • Korean Journal of Human Ecology
    • /
    • v.24 no.1
    • /
    • pp.97-109
    • /
    • 2015
  • Recently, because the market for compression wear now includes all consumers, not just professionals, various items for recovery after exercising or for enhanced effects from exercise have been introduced. In this research, a systematic and stepwise design process was proposed to develop compression garment that has both functional area and appropriate pressure to protect the knee when exercising. The U-V format functional area that wraps underneath the knee was selected by considering the shape and change in the skin length when bending the knee. After the selection of the functional area, a total of seven knee design areas, including the existing product, were designed to determine the appropriate pressure. After various movements, the compression garment was ranked in terms of support of the knee, level of pressure, discomfort of seam line, and comfort of popliteal; the preferred design was selected using the quad method. Four compression wear garments were produced using two selected preferred designs; the wear evaluation was performed using a seven-point Likert scale. As a result, the optimal reduction rate of the pattern was calculated based on Ziegert and Keil's method. The applied percentage of the fabric stretch at the upper part of the crotch was 66% for the width and 50% for the length; for the lower part of the crotch, only 66% for the width was applied. Moreover, it was determined that the design of the U-V knee protection part was preferred when a 7 mm square was placed at a 1 mm distance because this not only supports the knee but also allows the fabric to accommodate various skin deformations.

The Study on the Sweating Responses of Adult Female according to Garment types (의복형태에 따른 성인여성의 발한반응에 관한 연구)

  • Yeom Hee Gyong;Choi Jeong Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.4 s.44
    • /
    • pp.405-416
    • /
    • 1992
  • This study was performed to investigate correlation between total body weight loss and local sweat rate and to find out any possible method that can estimate total body weight loss judging from local sweat rate. Twelve adult females were kept at 44 $\pm1^{\circ}C$, 50 ${\pm}5\%$ R.H. (1) Physiological responses such as total body weight loss, local sweat rate, rectal temperature, skin temperature, blood pressure and pulse, (2) micro climate inside garment and (3) subjective sensation were examined. Two types of garment such as long-sleeves with long pants (Type I) and half·sleeves with short pants (Type II) were used to observe the effect of garment types on sweating response. Both clothing weight was equal (132$\pm$3 g/$m^{2}$). The results were as follows: 1. Regardless of the different types, total body weight loss was more interrelated with the sweat rate on forehead than any other parts of the body. Except the forehead, different parts of body with different types of garment influenced on body weight loss quite differently. 2. Total body weight loss was more interrelated with the weight gain of garment than the local sweat rate. 3. Under the environment of 44$\pm1^{\circ}C,\;50{\pm}5\%$R.H., body weight loss during 1 hour of subject clothed and silted was 275.2 g/hr and weight loss per body surface area was 178.9 g/$m^{2}/hr$ Garment types have no influences on total body weight loss. 4. Local sweat rate (mg/7.07 $cm^{2}/hr$) was 208.0,191.0, 133.0, 115.0,81 0, 75.1 and 66.3 on scruff, breast, forehead, forearm, thigh, upper arm, leg respectively No evidence has been found that garment types influenced on local sweat rate (p<0.1). 5. No interrelationships between rectal temperature and total body weight loss, local skin temperature and total body weight loss, and local skin temperature and local sweat rate were found. From this study, some possible method that we can estimate total body' weight loss judging from weight loss of garment. But considering the fact that clothing design factor, the physical characteristics of fabric and environmental factor such as humidity and wind velocity should be concerned in weight loss of garment, it should be studied further whether the total body weight loss can be estimated properly from the weight loss of garment. This experiment suggest that different parts of body with different types of garment can influence on body weight loss quite differently. Therefore, in order to get more precise results, more studies under the diversity of garment types should be done in the near future.

  • PDF