• Title/Summary/Keyword: gamma value

Search Result 1,082, Processing Time 0.028 seconds

A Study of Shielding Properties of X-ray and Gamma in Barium Compounds

  • Seenappa, L.;Manjunatha, H.C.;Chandrika, B.M.;Chikka, Hanumantharayappa
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.26-32
    • /
    • 2017
  • Background: Ionizing radiation is known to be harmful to human health. The shielding of ionizing radiation depends on the attenuation which can be achieved by three main rules, i.e. time, distance and absorbing material. Materials and Methods: The mass attenuation coefficient, linear attenuation coefficient, Half Value Layer (HVL) and Tenth Value Layer (TVL) of X-rays (32 keV, 74 keV) and gamma rays (662 keV) are measured in Barium compounds. Results and Discussion: The measured values agree well with the theory. The effective atomic numbers ($Z_{eff}$) and electron density (Ne) of Barium compounds have been computed in the wide energy region 1 keV to 100 GeV using an accurate database of photon-interaction cross sections and the WinXCom program. Conclusion: The mass attenuation coefficient and linear attenuation coefficient for $BaCO_3$ is higher than the $BaCl_2$, $Ba(No_3)_2$ and BaSO4. HVL, TVL and mean free path are lower for $BaCO_3$ than the $BaCl_2$, $Ba(No_3)_2$ and $BaSO_4$. Among the studied barium compounds, $BaCO_3$ is best material for x-ray and gamma shielding.

An innovative idea for developing a new gamma-ray dosimetry system based on optical colorimetry techniques

  • Ioan, Mihail-Razvan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.519-525
    • /
    • 2018
  • Obtaining knowledge of the absorbed dose up-taken by a certain material when it is exposed to a specific ionizing radiation field is a very important task. Even though there are a plenitude of methods for determining the absorbed dose, each one has its own strong points and also drawbacks. In this article, an innovative idea for the development of a new gamma-ray dosimetry system is proposed. The method described in this article is based on optical colorimetry techniques. A color standard is fixed to the back of a BK-7 glass plate and then placed in a point in space where the absorbed dose needs to be determined. Gamma-ray-induced defects (color centers) in the glass plate start occurring, leading to a degree of saturation of the standard color, which is proportional, on a certain interval, to the absorbed dose. After the exposure, a high-quality digital image of the sample is taken, which is then processed (MATLAB), and its equivalent $I_{RGB}$ intensity value is determined. After a prior corroboration between various well-known absorbed dose values and their corresponding $I_{RGB}$ values, a calibration function is obtained. By using this calibration function, an "unknown" up-taken dose value can be determined.

Impacts of siltstone rocks on the ordinary concrete's physical, mechanical and gamma-ray shielding properties: An experimental examination

  • R.S. Aita;K.A. Mahmoud;H.A. Abdel Ghany;E.M. Ibrahim;M.G. El-Feky;I.E. El Aassy
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2063-2070
    • /
    • 2024
  • A series of ordinary concrete is casted in order to examine the influence of the manganiferous siltstone rocks on the physical, mechanical, and gamma-ray shielding properties. Thus, a partial replacement for the coarse aggregates by siltstone rocks was performed during the fabrication of the currently ordinary concrete. The test revealed that raising the siltstone concentration improved the mechanical characteristics and density of the developed concretes. The addition of siltstone rocks at concentrations ranging from 0 to 40 wt% of the coarse aggregate concentration raises the density of the concrete from 2.05 g/cm3 to 2.3 g/cm3. Furthermore, partial substitution of basalt with siltstone rocks improves gamma-ray shielding properties. The experimental results for the linear attenuation coefficient show an increase in its value from 0.146 cm1 to 0.160 cm-1 when the siltstone concentration is increased between 0 and 40 wt% at 0.662 MeV. Furthermore, increasing the concentrations of siltstone affected the half-value thickness, which varied between 4.759 and 4.319 cm at 0.662 MeV. Therefore, the replacement presents a new alternative coarse aggregate that can enhance the mechanical and radiation shielding properties of ordinary concretes.

Experimental study of the radiation shielding characteristics of new PbO-Na2O-B2O3-BaO glasses

  • M.I. Sayyed;U. Rilwan;K.A. Mahmoud;Mohamed Elsafi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2437-2443
    • /
    • 2024
  • This work synthesized four glass samples with a fixed ratio of PbO to Na2O and a variable ratio of BaO to B2O3. The linear attenuation coefficient (LAC) (μ, cm-1) and additional attenuator parameters were determined experimentally using a semiconductor detector and different gamma sources. The comparison was carried out between the experimental and the XCOM calculated results, with good agreement emerging between the two results. The impacts of the BaO substituting for the B2O3 on fabricated PNBB glasses' radiation shielding properties were discussed. By increasing the BaO substitution concentration between 10 and 25 mol.%, the LAC μ values (cm-1) increased by 76.60 %, 13.81 %, 12.56 %, and 12.52 % for the respective γ-ray energies of 0.059, 0.662, 1.173, and 1.332 MeV. The μ value reduction with raised gamma energy values increased the values of the calculated half-value thickness (Δ0.5) as a result of the μ and Δ0.5 values' reverse proportionality. Other shielding parameters such as the lead equivalent thickness (Δeq) and radiation protection efficiency were also determined for the present PNBB glass samples.

Nonlinear semigroups on locally convex spaces

  • Hyeon, Son-Kuk
    • East Asian mathematical journal
    • /
    • v.6 no.1
    • /
    • pp.111-121
    • /
    • 1990
  • Let E be a locally convex Hausdorff space and let $\Gamma$ be a calibration for E. In this note we proved that if E is sequentially complete and a multi-vaiued operaturA in E is $\Gamma$-accretive such that $D(A){\subset}Re$ (I+$\lambda$A) for all sufficiently small positive $\lambda$, then A generates a nonlinear $\Gamma$-contraction semiproup {T(t) ; t>0}. We also proved that if E is complete, $Gamma$ is a dually uniformly convex calibration, and an operator A is m-$\Gamma$-accretive, then the initial value problem $$\{{\frac{d}{dt}u(t)+Au(t)\;\ni\;0,\;t >0,\atop u(0)=x}\.$$ has a solution $u:[0,\infty){\rightarrow}E$ given by $u(t)=T(t)x={lim}\limit_{n\rightarrow\infty}(I+\frac{t}{n}A)^{-n}x$ each $x{\varepsilon}D(A)$.

  • PDF

MARKOV-BERNSTEIN TYPE INEQUALITIIES FOR POLYNOMIALS

  • Kwon, K.H.;Lee, D.W.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.63-78
    • /
    • 1999
  • Let $\mu$(x) be an increasing function on the real line with finite moments of all oeders. We show that for any linear operator T on the space of polynomials and any interger n $\geq$ 0, there is a constant $\gamma n(T)\geq0$, independent of p(x), such that $\parallel T_p\parallel\leq\gamma n(T)\parallel P\parallel$, for any polynomial p(x) of degree $\leq$ n, where We find a formular for the best possible value $\Gamma_n(T)\;of\;\gamma n(T)$ and estimations for $\Gamma_n(T)$. We also give several illustrating examples when T is a differentiation or a difference operator and $d\mu$(x) is an orthogonalizing measure for classical or discrete orthogonal polynomials.

  • PDF

GAMMA-RAY EMISSION FROM BLAZARS

  • TAKAHARA FUMIO
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.99-102
    • /
    • 1996
  • I discuss implications of gamma-ray emission from blazars based on electron acceleration by shock waves in a relativistic jet. The number spectrum of electrons turns out to be a broken power law; while at low energies the power law index has a universal value of 2, at high energies it steepens to an index of 3 because of strong radiative cooling. This spectrum can basically reproduce the observed spectral break between X-rays and gamma-rays. I show that energetics of relativistic jets can be well explained by this model. I estimate physical quantities of the relativistic jets by comparing the prediction with observations. The results show that the jets are particle dominated and are comprised of electron-positron pairs. A connection between gamma-ray emission and radiation drag is also discussed.

  • PDF

Preparation of Modified Hollow Polypropylene Membrane and Their Adsorption Properties of ${\gamma}$-Globulins

  • Hwang, Taek-Sung;Park, Jin-Won
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.347-351
    • /
    • 2003
  • The hydrophobic ligand-containing hollow polypropylene (PP) membranes were synthesized by the mutual radiation induced graft copolymerization with glycidylmethacrylate (GMA) onto hollow PP membrane followed by the subsequent functionalization with L-phenylalanine. FT-IR, elemental analysis and UV spectroscopy were utilized to characterize copolymer composition, and degree of grafting, functionalization conversion and ${\gamma}$-globulins adsorption. The degree of grafting on the PP surface increased with the reaction time and total dose of E-beam. In the subsquent functionalization, the amount of L-phenylalanine increased with the increase in the degree of grafting and the degree of conversion was about 30%. The ${\gamma}$-globulins adsorption experiments showed that adsorption capacity had a maximum value at pH 8. The ${\gamma}$-globulins adsorption capacity in the basic pH region was higher than in the acidic pH region.

Region-wise evaluation of gamma-ray exposure dose in decontamination operation after a nuclear accident

  • Jeong, Hae Sun;Hwang, Won Tae;Han, Moon Hee;Kim, Eun Han;Lee, Jo Eun;Lee, Cheol Woo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2652-2660
    • /
    • 2021
  • The gamma-ray exposure doses in decontamination operation after a nuclear accident were evaluated with a consideration of various geometrical conditions and specific gamma-ray energies. The calculation domain is organized with three residence types and each form is divided into two kinds of geometrical arrangements. The position-wise air KERMA values were calculated with an assumption of evenly distributed gamma-ray source based on Monte Carlo radiation transport analysis using the MCNP code. The radioactivity is initially set to be unity to be multiplied by the deposition value measured in the actual accident condition. The workforce data set depending on the target object was determined by modifying the Fukushima report. The external exposure doses for decontamination workers were derived from the calculated KERMA values and the workforce analysis. These results can be used to efficiently determine the workforce required by the characteristics of the area and the structure to be decontaminated within the dose limits.

Evaluation of solid surface properties by analysis of liquid penetration rate into powder bed - Examination of surface free energy -

  • Choi, Woo-Sik;Ha, Jong-Hak
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.236.1-236.1
    • /
    • 2003
  • Evaluation of solid surface properties is very important for formulation of solid dosage form, specially insoluble drugs. The contact angle of insoluble drugs was measured by the penetration rate into powder bed using Washburn equation and wicking method. From the measured contact angle data, the surface free energy value of pharmaceutical powders ${\gamma}$s was divided and analysized into the polar component, ${\gamma}$s$\^$p/ and the dispersion component, ${\gamma}$s$\^$d/. Furthermore, the data was interpreted for acid part, ${\gamma}$s$\^$+/ and base part, ${\gamma}$s$\^$$\square$/ of surface free energy. (omitted)

  • PDF