MARKOV-BERNSTEIN TYPE INEQUALITIES FOR POLYNOMIALS

K. H. KWON AND D. W. LEE

ABSTRACT. Let $\mu(x)$ be an increasing function on the real line with finite moments of all orders. We show that for any linear operator T on the space of polynomials and any integer $n \geq 0$, there is a constant $\gamma_n(T) \geq 0$, independent of p(x), such that

$$||Tp|| < \gamma_n(T) ||p||,$$

for any polynomial p(x) of degree $\leq n$, where

$$||p|| = \left\{ \int_{-\infty}^{\infty} |p(x)|^2 d\mu(x) \right\}^{\frac{1}{2}}.$$

We find a formula for the best possible value $\Gamma_n(T)$ of $\gamma_n(T)$ and estimations for $\Gamma_n(T)$. We also give several illustrating examples when T is a differentiation or a difference operator and $d\mu(x)$ is an orthogonalizing measure for classical or discrete classical orthogonal polynomials.

1. Introduction

Markov-Bernstein type inequalities in weighted L^p spaces are interesting in themselves and important in approximation theory (see [1,4,7,9]). For example, consider an L^2 -norm on the space \mathcal{P} of polynomials with complex coefficients given by

$$\|p\|_{L^2(a,b;\omega)} := \left\{ \int_a^b |p(x)|^2 \omega(x) \, dx
ight\}^{\frac{1}{2}},$$

Received June 15, 1998. Revised August 17, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 33C45, 41A17, 41A44.

Key words and phrases: Markov-Bernstein type inequality, orthonormal polynomials, linear operator.

where $\omega(x)$ is an integrable function on (a,b), $-\infty \le a < b \le \infty$, such that $\omega(x) > 0$ on (a,b) and all moments

$$\omega_n := \int_a^b x^n \omega(x) \, dx, \quad n \ge 0$$

are finite. Then, using the orthonormal polynomial system $\{P_n(x)\}_{n=0}^{\infty}$ with respect to the positive measure $\omega(x)dx$, Mirsky [9] showed that there exists a constant $\gamma_n = \gamma_n(a,b,\omega)$ such that

$$||p'||_{L^2(a,b,;\omega)} \le \gamma_n ||p||_{L^2(a,b;\omega)}, \quad p \in \mathcal{P}_n,$$

where \mathcal{P}_n is the space of polynomials of degree $\leq n$. Furthermore, the best constant Γ_n of γ_n satisfies

$$\Gamma_n := \sup_{p \in \mathcal{P}_n} \{ \|p'(x)\|_{L^2(a,b;\omega)} \mid \|p\|_{L^2(a,b;\omega)} = 1 \} \le \left\{ \sum_{k=1}^n k \|P'_k\|^2 \right\}^{\frac{1}{2}}.$$

In 1987, Dörfler [4] extended Mirsky's inequality to higher order derivatives and suggested a way to find the best constant involved. Guessab and Milovanovic [7] have found the best constants for higher order derivatives when $\omega(x)$ is a weight for classical orthogonal polynomials.

In this paper, we show that Markov-Bernstein type inequalities in weighted L^2 -spaces hold not only for derivatives but also for any linear operator in \mathcal{P} even when the measure w(x)dx is replaced by any positive Borel measure $d\mu(x)$. We also give another way to find the best constant involved, which is easier to apply than Dörfler's. In particular, we obtain discrete versions of Markov-Bernstein type inequalities concerning for difference operators and compute the best constants involved in case the measure is the one for discrete classical orthogonal polynomials. Finally we give a similar result for linear operator on the space of polynomials with non-negative coefficients, which extends slightly the recent result by Chen [2].

2. Main results

We denote the degree of a polynomial p(x) by deg(p) with the convention that deg(0) = -1.

DEFINITION 2.1. A sequence of polynomials $\{P_n(x)\}_{n=0}^N$ is called an orthonormal polynomial system (ONPS) of order N ($N \ge 1$ is an integer or ∞) if $\deg(P_n) = n$, $0 \le n \le N$ and there exists an increasing function $\mu(x)$ on $\mathbb R$ such that

$$\int_{-\infty}^{\infty} P_m(x) P_n(x) \, d\mu(x) = \delta_{mn}, \quad 0 \leq m, n \leq N,$$

where δ_{mn} is the Kronecker delta.

From now on, we always assume that $\mu(x)$ is an increasing function on \mathbb{R} such that

$$\left| \int_{-\infty}^{\infty} x^n \, d\mu(x) \right| < \infty, \quad n = 0, 1, 2, \cdots.$$

We set

$$spec(\mu) := \{ x \in \mathbb{R} \mid \mu(x + \epsilon) - \mu(x - \epsilon) > 0, \text{ for any } \epsilon > 0 \}$$

and let N+1 be the cardinality of the set $spec(\mu)$. Then there exists a unique ONPS $\{P_n(x)\}_{n=0}^N$ of order N relative to $d\mu(x)$ (see [11]).

We use the following notations: for any a with $1 \le a \le \infty$,

$$\|c\|_a := \left(\sum_{k=0}^n |c_k|^a\right)^{rac{1}{a}} \quad ext{if } 1 \leq a < \infty, \quad \|c\|_\infty := \max\{|c_k| : 0 \leq k \leq n\}$$

for any vector $c = (c_0, c_1, \dots, c_n)$ in \mathbb{C}^{n+1} and

$$\|p\|:=\left\{\int_{-\infty}^\infty |p(x)|^2\,d\mu(x)
ight\}^{rac{1}{2}},\quad p\in\mathcal{P}.$$

We note that on \mathcal{P}_n , ||p|| is a norm if $0 \le n \le N$ and a semi-norm if n > N.

Let T be any linear operator from \mathcal{P}_n into \mathcal{P} , where n is any fixed integer with $0 \leq n \leq N$. Then T is bounded so that there is a constant $\gamma_n(T)$, depending only on n and T, such that

$$(2.1) ||Tp|| \le \gamma_n(T)||p||, \quad p \in \mathcal{P}_n.$$

We let $\Gamma_n(T)$ be the smallest possible value of $\gamma_n(T)$ in (2.1). That is, $\Gamma_n(T)$ is the operator norm of $T: \Gamma_n(T) := \sup_{\|x\|=1} \|Tp\|$.

In the following, we let $\{\phi_k(x)\}_{k=0}^{\infty}$ be any sequence of polynomials with $\deg(\phi_k) = k, \ k \geq 0$, that is, $\{\phi_k(x)\}_{k=0}^{\infty}$ is a basis of \mathcal{P} .

THEOREM 2.1. Let T and $\Gamma_n(T)$ be the same as above. Then

$$\Gamma_n(T) = \sup_{c \in \mathbb{C}^{n+1} \setminus \{0\}} \sqrt{\frac{cD^T A(m) \bar{D} \bar{c}^T}{cA(n) \bar{c}^T}},$$

where $c = (c_0, c_1, \dots, c_n)$ are vectors in \mathbb{C}^{n+1} and $D = (d_k^j)_{j=0,k=0}^m$ and $A(n) = (a_{ij})_{i,j=0}^n$ are matrices whose entries are given by

$$(T\phi_k)(x) := \sum_{j=0}^m d_k^j \phi_j(x), \quad m := \max_{0 \le k \le n} \deg(T\phi_k)$$

and

$$a_{ij} := \int_{-\infty}^{\infty} \phi_i(x) ar{\phi}_j(x) \, d\mu(x).$$

Proof. For any polynomial $p(x) \in \mathcal{P}_n$, we may write it as

$$p(x) = \sum_{k=0}^{n} c_k \phi_k(x).$$

Then, we have

$$\|p\|^2 = \int_{\mathbb{R}} |p(x)|^2 d\mu(x) = \sum_{j=0}^n \sum_{k=0}^n c_j \bar{c}_k \int_{\mathbb{R}} \phi_j(x) \bar{\phi}_k(x) d\mu(x) = cA(n)\bar{c}^T.$$

$$||Tp||^{2} = \int_{\mathbb{R}} |Tp(x)|^{2} d\mu(x) = \int_{\mathbb{R}} \sum_{k=0}^{n} \left(c_{k} \sum_{j=0}^{m} d_{k}^{j} \right) \phi_{j} \sum_{\ell=0}^{n} \left(\bar{c}_{\ell} \sum_{i=0}^{m} \bar{d}_{\ell}^{i} \right) \bar{\phi}_{i} d\mu(x)$$

$$= \sum_{j=0}^{m} \left(\sum_{k=0}^{n} c_{k} d_{k}^{j} \right) \sum_{i=0}^{m} \left(\sum_{\ell=0}^{n} \bar{c}_{\ell} \bar{d}_{\ell}^{i} \right) \int_{\mathbb{R}} \phi_{j} \bar{\phi}_{i} d\mu(x)$$

$$= (Dc^{T})^{T} A(m) (\bar{D} \bar{c}^{T}).$$

Hence, we have

$$\Gamma_n(T) = \sup_{p \in \mathcal{P}_n \setminus \{0\}} \frac{\|Tp\|}{\|p\|} = \sup_{c \in \mathbb{C}^{n+1} \setminus \{0\}} \sqrt{\frac{cD^T A(m) \bar{D} \bar{c}^T}{cA(n) \bar{c}^T}}.$$

THEOREM 2.2. Let T and $\Gamma_n(T)$ be the same as in Theorem 2.1. If we assume $m = \max_{0 \le k \le n} \deg(TP_k) \le N$, then

(2.2)
$$\Gamma_n(T) = \sup_{\substack{\|c\|_2 = 1 \\ c \in \mathbb{C}^{n+1}}} \left\{ \sum_{j=0}^m |\sum_{k=0}^n c_k d_k^j|^2 \right\}^{\frac{1}{2}}.$$

Here, $D = (d_k^j)_{i=0,j=k}^m$ is the matrix whose entries are given by

(2.3)
$$(TP_k)(x) = \sum_{j=0}^m d_k^j P_j(x),$$

where $\{P_n(x)\}_{n=0}^N$ is the ONPS relative to $d\mu(x)$. Moreover, $\Gamma_n(T)$ satisfies an estimate: for any a with $1 \le a \le \infty$

(2.4)
$$\max_{0 \le k \le n} ||TP_k|| \le \Gamma_n(T) \le C(a,n) ||(||TP_0||, \cdots, (||TP_n||)||_b,$$

where

$$C(a,n) = \sup_{c \in \mathbb{C}^{n+1} \setminus \{0\}} \frac{\|c\|_a}{\|c\|_2} \quad \text{and} \quad \frac{1}{a} + \frac{1}{b} = 1.$$

Proof. If we take $\{P_k(x)\}_{k=0}^N$ for $\{\phi_k(x)\}_{k=0}^N$ in the proof of Theorem 2.1, then the matrix A(n), $n \geq 1$, becomes an identity matrix since $\{P_k(x)\}_{k=0}^N$ is an ONPS relative to $d\mu(x)$. Hence, $cA(n)\bar{c}^T = \|c\|^2$ and so

$$\Gamma_n(T) = \sup_{\substack{\|c\|_2 = 1 \\ c \in \mathbb{C}^{n+1}}} \sqrt{cD^T \bar{D} \bar{c}^T},$$

which is the matrix form of the equation (2.2). On the other hand, for any a with $1 \le a \le \infty$ and for any $p(x) = \sum_{k=0}^{n} c_k P_k(x)$ in \mathcal{P}_n , Hölder's inequality implies

$$||Tp|| \le \sum_{k=0}^{n} |c_k| \, ||TP_k|| \le ||c||_a \, ||(||TP_0||, \cdots, ||TP_n||)||_b \quad \left(\frac{1}{a} + \frac{1}{b} = 1\right).$$

Now, let $S: \mathcal{P}_n \longrightarrow \mathbb{C}^{n+1}$ be the linear operator defined by

$$S(p) = S\left(\sum_{k=0}^{n} c_k P_k\right) = (c_0, c_1, \cdots, c_n).$$

Then

$$||c||_a = ||S(p)||_a \le ||S|| \, ||p|| = c(a, n) ||p||.$$

Hence,

$$||Tp|| \le C(a,n) ||(||TP_0||, \cdots, ||TP_n||)||_b ||p||, \quad p \in \mathcal{P}_n$$

which gives the upper bound for $\Gamma_n(T)$ in (2.4). The lower bound for $\Gamma_n(T)$ in (2.4) is trivial since $||P_k|| = 1$, $0 \le k \le n$.

Of particular interest to us are the cases when a = 1 or 2.

COROLLARY 2.3. Let T and $\Gamma_n(T)$ be the same as in Theorem 2.2. Then

(2.5)
$$\max_{0 \le k \le n} \|TP_k\| \le \Gamma_n(T) \le \sqrt{n+1} \max_{0 \le k \le n} \|TP_k\|.$$

Proof. If we set a=1 in (2.4), then we obtain

(2.6)
$$\max_{0 \le k \le n} ||TP_k|| \le \Gamma_n(T) \le C(1, n) \max_{0 \le k \le n} ||TP_k||.$$

Since $||c||_1 \le \sqrt{n+1} ||c||_2$, $c \in \mathbb{C}^{n+1}$,

$$C(1,n) \le \sqrt{n+1}$$

so that (2.5) follows from (2.6).

When a=2, we obtain:

COROLLARY 2.4. Let T and $\Gamma_n(T)$ be the same as in Theorem 2.2. Then

(2.7)
$$\max_{0 \le k \le n} ||TP_k|| \le \Gamma_n(T) \le \left\{ \sum_{k=0}^n ||TP_k||^2 \right\}^{\frac{1}{2}}.$$

Dörfler [4] obtained the best constant $\Gamma_n(T)$ (in a different form) and the inequality (2.7) when $\mu(x)$ is absolutely continuous so that $d\mu(x) = w(x)dx$, $N = \infty$, and $T = \frac{d^r}{dx^r}$ (see also Mirsky [9] in case r = 1).

Since $\Gamma_n(T)$ is the smallest value of λ satisfying

(2.8)
$$\frac{cD^T A(m) \bar{D} \bar{c}^T}{cA(n) \bar{c}^T} \le \lambda^2, \quad c \in \mathbb{C}^{n+1} \setminus \{0\},$$

 $\Gamma_n(T)$ is the smallest constant λ such that $\lambda^2 A(n) - D^T A(m) \bar{D}$ is positive-semi definite. By the positive-definiteness of $d\mu(x)$ on \mathcal{P}_n , $0 \leq n \leq N$, A(n) is Hermitian for $n \geq 0$ and positive-definite for $0 \leq n \leq N$ and $D^T A(m) \bar{D}$ is Hermitian and positive-semidefinite for $m \geq 0$.

If A(n) and $D^T A(m) \bar{D}$ commute, then they have n+1 common linearly independent eigenvectors $\{u_i\}_{i=0}^n$ such that

(2.9)
$$Au_i = \mu_i u_i, \quad D^T A \bar{D} u_i = \nu_i u_i, \quad i = 0, 1, \dots, n$$

since both A(n) and $D^T A(m) \bar{D}$ are Hermitian (see [8]). Now, we have the following.

THEOREM 2.5. Let T and $\Gamma_n(T)$ be the same as in Theorem 2.1. If A(n) and $D^T A(m) \bar{D}$ commute, then

$$\Gamma_n(T) = \max_{0 \le i \le n} \sqrt{\frac{\nu_i}{\mu_i}},$$

where μ_i (> 0) and ν_i (\geq 0), $0 \leq i \leq n$, are the eigenvalues of A(n) and $D^T A(m) \bar{D}$ respectively as in (2.9).

Proof. Let $\sigma:=\max_{0\leq i\leq n}\sqrt{\frac{\nu_i}{\mu_i}}$. Then, $\sigma^2A(n)-D^TA(m)\bar{D}$ is positive-semidefinite since it is Hermitian and has non-negative eigenvalues $\sigma^2\mu_i-\nu_i,\ 0\leq i\leq n$. Hence, $\Gamma_n(T)\leq \sigma$. Conversely, the left hand side of the inequality (2.8) becomes σ^2 when $c=\bar{u}_r$, where r is an integer such that $0\leq r\leq n$ and $\sigma^2=\frac{\nu_r}{\mu_r}$. Hence, $\Gamma_n(T)\geq \sigma$.

In particular, if $m \leq N$ and if we take $\{\phi_k(x)\}_{k=0}^N = \{P_k(x)\}_{k=0}^N$ so that A(n) is the identity matrix, then $\Gamma_n(T)^2$ is equal to the largest eigenvalue of the matrix $D^T\bar{D}$, i.e., the largest singular value of D (D as in Theorem 2.2). This fact is observed and used by Dörfler [4] when T is a differentiation and $N = \infty$.

Below we give several examples illustrating Theorem 2.2 when T is a differential or difference operator and $d\mu(x)$ is an orthogonalizing measure for classical or discrete classical orthogonal polynomials.

EXAMPLE 2.1. Consider $d\mu(x) = x^{\alpha}e^{-x}H(x) dx$, where $\alpha > -1$ and H(x) is the Heaviside step function. The corresponding ONPS $\{P_n(x)\}_{n=0}^{\infty}$ is

$$P_n(x) = \left\{rac{n!}{\Gamma(n+lpha+1)}
ight\}^{rac{1}{2}} L_n^{(lpha)}(x), \quad n \geq 0,$$

where $L_n^{(\alpha)}(x)$ is the *n*-th Laguerre polynomial (see [3, 11]). From the addition formula (see [11, p. 391, Problem 90])

$$L_n^{(\alpha+\beta+1)}(x+y) = \sum_{k=0}^n L_{n-k}^{(\alpha)}(x) L_k^{(\beta)}(y),$$

we can easily deduce for $0 \le k \le n$

$$\frac{d^r}{dx^r}L_n^{(\alpha)}(x) = (-1)^r L_{n-r}^{(\alpha+r)}(x) = (-1)^r \sum_{j=0}^{n-r} \binom{j+r-1}{j} L_{n-r-j}^{(\alpha)}(x)$$

and (2.10)
$$\frac{d^r}{dx^r} P_n(x) = (-1)^r \left\{ \frac{n!}{\Gamma(n+\alpha+1)} \right\}^{\frac{1}{2}} \sum_{j=0}^{n-r} \left(\frac{\Gamma(j+\alpha+1)}{\Gamma(j+1)} \right)^{\frac{1}{2}} \binom{n-j-1}{r-1} P_j(x).$$

If we take $T = \frac{d^r}{dx^r}$, then the relation (2.10) implies that the coefficients in (2.3) are given by

$$d_k^j = \left\{ \begin{array}{ll} (-1)^r \{ \frac{k!}{j!} \frac{\Gamma(j+\alpha+1)}{\Gamma(k+\alpha+1)} \}^{\frac{1}{2}} \binom{k-j-1}{k-j-r}, & 0 \leq j \leq k-r \\ 0, & \text{otherwise} \end{array} \right.$$

so that

$$\Gamma_n \left(\frac{d^r}{dx^r} \right) = \sup_{\substack{c \in \mathbb{C}^{n+1} \\ \|c\|_2 = 1}} \left\{ \sum_{j=0}^{n-r} \left| \sum_{k=j+r}^n c_k d_k^j \right|^2 \right\}^{\frac{1}{2}}.$$

In general, it's very hard to compute $\Gamma_n(\frac{d^r}{dx^r})$ explicitly. However, we have

$$\begin{split} \max_{r \leq k \leq n} \left\| \frac{d^r}{dx^r} P_k \right\| \\ &= \max_{r \leq k \leq n} \left\| (-1)^r \left(\frac{k!}{\Gamma(k+\alpha+1)} \right)^{\frac{1}{2}} \times \right. \\ &\left. \sum_{j=0}^{k-r} \left(\frac{\Gamma(j+\alpha+1)}{\Gamma(j+1)} \right)^{\frac{1}{2}} \binom{k-j-1}{r-1} P_j(x) \right\| \\ &= \max_{r \leq k \leq n} \left\{ \frac{k!}{\Gamma(k+\alpha+1)} \right\}^{\frac{1}{2}} \left\{ \sum_{j=0}^{k-r} \frac{\Gamma(j+\alpha+1)}{\Gamma(j+1)} \binom{k-j-1}{r-1}^2 \right\}^{\frac{1}{2}}. \end{split}$$

Since
$$\frac{k!}{\Gamma(k+\alpha+1)}$$
 is decreasing (increasing) if $\alpha \geq 0$ $(-1 < \alpha < 0)$,
$$\begin{cases} \left(\frac{n!}{\Gamma(n+\alpha+1)}\right)^{\frac{1}{2}} \Delta_n \leq \max_{r \leq k \leq n} \|\frac{d^r}{dx^r} P_k\| \leq \left(\frac{r!}{\Gamma(r+\alpha+1)}\right)^{\frac{1}{2}} \Delta_n, \\ \text{if } \alpha \geq 0 \\ \left(\frac{r!}{\Gamma(r+\alpha+1)}\right)^{\frac{1}{2}} \Delta_n \leq \max_{r \leq k \leq n} \|\frac{d^r}{dx^r} P_k\| \leq \left(\frac{n!}{\Gamma(n+\alpha+1)}\right)^{\frac{1}{2}} \Delta_n, \\ \text{if } -1 < \alpha < 0, \end{cases}$$

where

$$\Delta_n = \left\{ \sum_{j=0}^{n-r} \frac{\Gamma(j+\alpha+1)}{\Gamma(j+1)} \binom{n-j-1}{r-1}^2 \right\}^{\frac{1}{2}}.$$

Hence the inequality (2.5) gives

(2.11)
$$\begin{cases} \left(\frac{n!}{\Gamma(n+\alpha+1)}\right)^{\frac{1}{2}} \Delta_n \leq \Gamma_n \left(\frac{d^r}{dx^r}\right) \leq \left(\frac{r!(n+1)}{\Gamma(r+\alpha+1)}\right)^{\frac{1}{2}} \Delta_n, \\ \text{if } \alpha \geq 0 \\ \left(\frac{r!}{\Gamma(r+\alpha+1)}\right)^{\frac{1}{2}} \Delta_n \leq \Gamma_n \left(\frac{d^r}{dx^r}\right) \leq \left(\frac{n!(n+1)}{\Gamma(n+\alpha+1)}\right)^{\frac{1}{2}} \Delta_n, \\ \text{if } -1 < \alpha < 0. \end{cases}$$

In particular, when $\alpha = 0$, we obtain (2.12)

$$\left\{ \sum_{j=0}^{n-r} \binom{n-j-1}{r-1}^2 \right\}^{\frac{1}{2}} \le \Gamma_n \left(\frac{d^r}{dx^r} \right) \le \sqrt{n+1} \left\{ \sum_{j=0}^{n-r} \binom{n-j-1}{r-1}^2 \right\}^{\frac{1}{2}}.$$

When r=1, Dörfler [6] obtained a sharper upper bound for $\Gamma_n(d/dx)$ than (2.11). When $\alpha = 0$, Dörfler [5, Theorem 2] obtained a similar estimation as (2.12) which gives a sharper upper bound. But, the method in [5] is not easy to extend for $\alpha > -1$ but $\alpha \neq 0$. In particular, when r=1 and $\alpha=0$, Turán [12] found explicitly $\Gamma_n(d/dx)$ as

$$\Gamma_n\left(\frac{d}{dx}\right) = \left(2\sin\frac{\pi}{4n+2}\right)^{-1}.$$

Now, consider the forward difference operator Δ defined by

$$\Delta p(x) = p(x+1) - p(x), \quad p \in \mathcal{P}.$$

EXAMPLE 2.2. Let $\nu(x)$ be a step function such that $spec(\nu) = \{0,1,2,\cdots\}$ and jump of ν at x=n is $\frac{\mu^n e^{-\mu}}{n!}$, $n \geq 0$, where $\mu > 0$. Then, the corresponding ONPS $\{P_n(x)\}_{n=0}^{\infty}$ relative to $d\nu(x)$ is

$$P_n(x) = \sqrt{\frac{\mu^n}{n!}} C_n^{(\mu)}(x), \quad n \ge 0,$$

where $C_n^{(\mu)}(x)$ is the *n*-th Charlier polynomial (see [10]). From the relation $\Delta C_n^{(\mu)}(x) = -\frac{n}{\mu} C_{n-1}^{(\mu)}(x)$, it can be easily shown that

(2.13)
$$\Delta^r P_k(x) = (-1)^r \left\{ \mu^{-r} r! \binom{k}{r} \right\}^{\frac{1}{2}} P_{k-r}(x), \quad k \ge r.$$

If we take $T = \Delta^r$ $(1 \le r \le n)$, then the relation (2.13) implies that the coefficients d_k^j in (2.3) are given by

$$d_k^j = \begin{cases} (-1)^r (\mu^{-r} r! \binom{k}{r})^{\frac{1}{2}}, & j = k - r \\ 0, & \text{otherwise} \end{cases}$$

so that

$$\Gamma_n(\Delta^r) = \sup_{\substack{c \in \mathbb{C}^{n+1} \\ \|c\|_2 = 1}} \left(\sum_{j=0}^{n-r} |\sum_{k=0}^n c_k d_k^j|^2 \right)^{\frac{1}{2}} = \sup_{\substack{c \in \mathbb{C}^{n+1} \\ \|c\|_2 = 1}} \left(\mu^{-r} r! \sum_{k=r}^n {k \choose r} |c_k|^2 \right)^{\frac{1}{2}}$$
$$= \left\{ \mu^{-r} r! {n \choose r} \right\}^{\frac{1}{2}}.$$

Moreover, it is easy to see that the supremum is attained only when $c = (0, 0, \dots, 0, b)$, |b| = 1 by using the Lagrange multiplier. Thus, we have

$$\|\Delta^r p\| \le \left\{\mu^{-r} r! \binom{n}{r}\right\}^{\frac{1}{2}} \|p\|, \quad p \in \mathcal{P}_n$$

and equality holds if and only if $p(x) = aP_n(x)$, where a is a constant.

Dörfler [4] obtained a similar result as Example 2.2 for the operator $\frac{d^r}{dx^r}$ and the measure $e^{-x^2}dx$ using Hermite polynomials, which are continuous analogues of Charlier polynomials.

EXAMPLE 2.3. Let $\nu(x)$ be a step function such that $spec(\nu) = \{0,1,2,\cdots\}$ and jump of $\nu(x)$ at x=n is $\frac{\mu^n\Gamma(\gamma+n)}{n!\Gamma(\gamma)}, \ n\geq 0$, where $\gamma>0,\ 0<\mu<1$. Then, the corresponding ONPS $\{P_n(x)\}_{n=0}^{\infty}$ relative to $d\nu(x)$ is

$$P_n^{(\gamma,\mu)}(x) = \left\{\frac{\mu^n (1-\mu)^\gamma}{n!(\gamma)_n}\right\}^{\frac{1}{2}} M_n^{(\gamma,\mu)}(x), \quad n \ge 0,$$

where $M_n^{(\gamma,\mu)}(x)$ is the *n*-th Meixner polynomial (see [10]). From the relation $\Delta M_n^{(\gamma,\mu)}(x) = -\frac{n(1-\mu)}{\mu} M_{n-1}^{(\gamma+1,\mu)}(x)$, it can be easily shown that

$$\Delta^{r} P_{k}^{(\gamma,\mu)}(x) = (-1)^{r} E(r,k,\gamma,\mu) P_{k-r}^{(\gamma+r,\mu)}(x),$$

where

$$E(r,k,\gamma,\mu) = \left\{ rac{k!\Gamma(\gamma)(1-\mu)^r}{(k-r)!\Gamma(\gamma+r)\mu^r}
ight\}^{rac{1}{2}}.$$

Hence, we have

$$\begin{split} &\|\Delta^r P_k^{(\gamma,\mu)}\|^2 \\ &= E^2(r,k,\gamma,\mu) \sum_{i=0}^{\infty} [P_{k-r}^{(\gamma+r,\mu)}(i)]^2 \frac{\mu^i \Gamma(\gamma+i)}{i! \Gamma(\gamma)} \\ &= E^2(r,k,\gamma,\mu) \sum_{i=0}^{\infty} [P_{k-r}^{(\gamma+r,\mu)}(i)]^2 \frac{\mu^i \Gamma(\gamma+r+i)}{i! \Gamma(\gamma+r)} \cdot \frac{\Gamma(\gamma+i) \Gamma(\gamma+r)}{\Gamma(\gamma+r+i) \Gamma(\gamma)} \\ &\leq E^2(r,k,\gamma,\mu) \max_{0 \leq i \leq \infty} \frac{\Gamma(\gamma+i) \Gamma(\gamma+r)}{\Gamma(\gamma+r+i) \Gamma(\gamma)} \\ &= E^2(r,k,\gamma,\mu), \end{split}$$

since

$$\sum_{i=0}^{\infty} [P_{k-r}^{(\gamma+r,\mu)}(i)]^2 rac{\mu^i \, \Gamma(r+\gamma+i)}{i! \, \Gamma(\gamma+r)} = 1, \quad k=r,r+1,\cdots,$$

and $\frac{\Gamma(\gamma+i)}{\Gamma(\gamma+r+i)}$, $i \geq 0$, is monotone decreasing in i. Therefore,

$$\|\Delta^r P_k^{(\gamma,\mu)}\| \leq \left\{ \frac{k!\Gamma(\gamma)(1-\mu)^r}{(k-r)!\Gamma(\gamma+r)\mu^r} \right\}^{\frac{1}{2}}.$$

The estimation (2.5) in Corollary 2.3 implies that

$$\Gamma_n(\Delta^r) \le \sqrt{n+1} \left\{ \frac{\Gamma(\gamma)(1-\mu)^r}{\Gamma(\gamma+r)\mu^r} \right\}^{\frac{1}{2}} \max_{r \le k \le n} \left\{ \frac{k!}{(k-r)!} \right\}^{\frac{1}{2}}$$
$$= \sqrt{n+1} \left\{ \frac{\Gamma(\gamma)(1-\mu)^r}{\Gamma(\gamma+r)\mu^r} \right\}^{\frac{1}{2}} \left\{ \frac{n!}{(n-r)!} \right\}^{\frac{1}{2}}.$$

Finally, we give a minor extension of the recent work by Chen [2], which handles the similar extremal problem on the space of polynomials with non-negative coefficients.

Assume that T is a linear operator on the space of real polynomials and consider the following extremal problem

$$\tilde{\Gamma}_n(T) := \sup_{p \in S_n} \frac{\|Tp\|}{\|p\|},$$

where

$$S_n:=\{p(x)\in\mathcal{P}_n:p(x)=\sum_{k=0}^nc_k\phi_k(x),\quad c_k\geq 0,\quad 0\leq k\leq n\}$$

and $\{\phi_k(x)\}_{k=0}^{\infty}$ is a sequence of real polynomials with $\deg(\phi_k)=k, k\geq 0.$

By the same arguments as before, we can see that $\tilde{\Gamma}_n(T)$ is the smallest value of λ such that

$$(2.14) c[\lambda^2 A(n) - D^T A(m)D]c^T \ge 0$$

for all $c=(c_0,c_1,\cdots,c_n)$ in \mathbb{R}^{n+1} with $c_i\geq 0,\ 0\leq i\leq n$, where matrices A(n) and D are the same as in Theorem 2.1.

K. H. Kwon and D. W. Lee

We set $D^T A(m)D = (\tilde{a}_{ij})_{i,j=0}^n$ and assume that $a_{ij} \geq 0$, $\tilde{a}_{ij} \geq 0$ for $0 \leq i, j \leq n$ and if $a_{ij} = 0$, then $\tilde{a}_{ij} = 0$. Let

$$\tilde{\sigma} := \max_{0 \le i, j \le n} \left\{ \sqrt{\frac{\tilde{a}_{ij}}{a_{ij}}} \; \middle| \; a_{ij} > 0 \; \right\}.$$

Since c has all positive elements, the inequality (2.14) holds for $\lambda = \tilde{\sigma}$. Hence,

THEOREM 2.6. If $\tilde{\sigma}$ occurs at i = j = r, then $\tilde{\Gamma}_n(T) = \tilde{\sigma}$, that is,

(2.16)
$$||Tp|| \le \sqrt{\frac{\tilde{a}_{rr}}{a_{rr}}} ||p||, \quad p \in S_n$$

and equality holds for $p(x) = b\phi_r(x)$, where b is a non-negative constant.

Proof. For $c=(c_0,c_1,\cdots,c_n)$ with $c_i=0,\ i\neq r$ and $c_r=1,$ we have

(2.17)
$$c(\tilde{\sigma}^2 A(n) - D^T A(m)D)c^T = 0$$

so that $\tilde{\Gamma}_n(T) \geq \tilde{\sigma}$ and so $\tilde{\Gamma}_n(T) = \tilde{\sigma}$ by (2.15). Equality in (2.16) holds for any $p(x) = \sum_{k=0}^n c_k \phi_k(x)$ in S_n if and only if $c = (c_0, c_1, \dots, c_n)$ satisfies (2.17), which holds, in particular, if $c_i = 0$ for $i \neq r$ and $c_r \geq 0$ is arbitrary.

EXAMPLE 2.4. Consider $d\mu(x) = (1-x^2)^{\alpha} dx$ with $\alpha > -1$ and $\{\phi_k(x)\}_{k=0}^{\infty} = \{x^k\}_{k=0}^{\infty}$. Then we have

$$S_n = \{p(x) \in \mathcal{P}_n \, : \, p(x) = \sum_{k=0}^n c_k x^k, \quad c_k \geq 0, \quad 0 \leq k \leq n\}.$$

For $T = \frac{d^r}{dx^r}$ $(1 \le r \le n)$, we have

$$a_{ij} = \int_{-1}^{1} x^{i+j} (1-x^2)^{\alpha} dx = \frac{1-(-1)^{i+j+1}}{2} B\left(\frac{i+j+1}{2}, \alpha+1\right),$$

$$\tilde{a}_{ij} = \begin{cases} 0, & \text{if } i < r \text{ or } j < r \\ \int_{-1}^{1} \frac{i!}{(i-r)!} \frac{j!}{(j-r)!} x^{i+j-2r} (1-x^2)^{\alpha} dx = \frac{i!}{(i-r)!} \frac{j!}{(j-r)!} a_{i-r,j-r} \\ & \text{if } i, j \ge r, \end{cases}$$

where $B(\cdot, \cdot)$ is the Beta function. Hence, we have $a_{ij} \geq 0$, $\tilde{a}_{ij} \geq 0$ and $\tilde{a}_{ij} = 0$ if $a_{ij} = 0$ and

$$\begin{split} \frac{\tilde{a}_{ij}}{a_{ij}} &= \frac{i!}{(i-r)!} \frac{j!}{(j-r)!} \frac{B(\frac{i+j-2r+1}{2}, \, \alpha+1)}{B(\frac{i+j+1}{2}, \, \alpha+1)} \\ &= \prod_{k=0}^{r-1} \frac{(i-k)(j-k)(2\alpha+i+j-2k+1)}{i+j-2k-1} \quad (a_{ij} \neq 0). \end{split}$$

Since each factor $\frac{(i-k)(j-k)(2\alpha+i+j-2k+1)}{i+j-2k-1}$, $0 \le k \le r-1$, increases with i and j, $\frac{\tilde{a}_{ij}}{a_{ij}}$ attains its maximum when i=j=n. Hence,

$$\tilde{\sigma}^2 = \frac{\tilde{a}_{nn}}{a_{nn}} = \left[\frac{n!}{(n-r)!}\right]^2 \prod_{k=0}^{r-1} \frac{2\alpha + 2n - 2k + 1}{2n - 2k - 1}.$$

By Theorem 2.6, we have

$$||p^{(r)}|| \le \frac{n!}{(n-r)!} \left\{ \prod_{k=0}^{r-1} \frac{2\alpha + 2n - 2k + 1}{2n - 2k - 1} \right\}^{\frac{1}{2}} ||p||, \quad p \in S_n$$

and equality holds when $p(x) = bx^n$.

Similar results for $T = \frac{d^r}{dx^r}$ can be obtained for $d\mu(x) = x^{\alpha}e^{-x} dx$ $(\alpha > -1)$ and $e^{-\alpha x^2}$ $(\alpha > 0)$ as Chen [2] did only for T = d/dx.

ACKNOWLEDGEMENTS. This work is partially supported by KOSEF (95-0701-02-01-3) and Korea Ministry of Education (BSRI 98-1420). Authors thank Professor Dörfler for providing references [5,6] and the referees for their very careful reading of the manuscript and many valuable comments.

K. H. Kwon and D. W. Lee

References

- P. Borwein and T. Erdélyi, Markov-Bernstein-Type Inequalities for Classes of Polynomials with Restricted Zeros, Constr. Approx. 10 (1994), 411-425.
- [2] W. Chen, Some inequalities of algebraic polynomials with nonnegative coefficients, Trans. Amer. Math. Soc. 347 (1995), 2161-2167.
- [3] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, N.Y., 1977.
- [4] P. Dörfler, New inequalities of Markov type, SIAM J. Math. Anal. 18 (1987), 490-494.
- [5] P. Dörfler, A Markov Type Inequality for Higher Derivatives of Polynomials, Mh. Math. 109 (1990), 113-122.
- [6] P. Dörfler, Über die bestmögliche Konstante in Markov-Ungleichungen mit Laguerre-Gewicht, Sitzungsber. Abt. II, Österr. Akad. Wiss. Math. Naturwiss. K1 200 (1991), 13-20.
- [7] A. Guessab and G. V. Milovanović, Weighted L²-analogues of Bernstein's inequality and classical orthogonal polynomials, J. Math. Anal. Appl. 182 (1994), 244-249.
- [8] P. Lancaster and M. Tismenetsky, The Theory of Matrices (2nd, ed.), Acad. Press, N.Y., 1985.
- L. Mirsky, An inequality of the Markov-Bernstein type for polynomials, SIAM
 J. Math. Anal. 14 (1983), 1004-1008.
- [10] A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal polynomials of a Discrete Variable, Springer-Verlag, N.Y., 1991.
- [11] G. Szegö, Orthogonal Polynomials, AMS Coll. Publ. Vol 23, Providence R. I., 1939.
- [12] P. Turán, Remark on a theorem by Erhard Schmidt, Mathematica (Cluj) 2 (1960), 373-378.
- K. H. Kwon, Department of Mathematics, KAIST, Taejon 305-701, Korea *E-mail*: khkwon@jacobi.kaist.ac.kr
- D. W. Lee, Topology and Geometry Research Center, Kyungpook National University, Taegu 702-701, Korea *E-mail*: dwlee@gauss.kyungpook.ac.kr