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MARKOV-BERNSTEIN TYPE
INEQUALITIES FOR POLYNOMIALS

K. H. KwonN AnND D. W. LEE

ABSTRACT. Let pu(z) be an increasing function on the real line with
finite moments of all orders. We show that for any linear operator
T on the space of polynomials and any integer n > 0, there is a
constant v, (T") > 0, independent of p(z), such that

(1Tpll € v (T) lpl,

for any polynomial p(z) of degree < n, where

llpll = { /_ O; Ip(2)|? du(m)}%.

We find a formula for the best possible value I'n(T") of v, (T) and
estimations for I', (7). We also give several illustrating examples
when T is a differentiation or a difference operator and du(z) is an
orthogonalizing measure for classical or discrete classical orthogonal
polynomials.

1. Introduction

Markov-Bernstein type inequalities in weighted LP spaces are in-
teresting in themselves and important in approximation theory (see
[1,4,7,9]). For example, consider an L?-norm on the space P of polyno-
mials with complex coefficients given by

[Pl z2(abw) = {/: Ip(z) *w(z) dx}%,
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where w(z) is an integrable function on (a,b), —oo < a < b < o0, such
that w(z) > 0 on (a,b) and all moments

b
Wn :=/ z"w(z)dz, n>0
a

are finite. Then, using the orthonormal polynomial system {Pn(z)}52
with respect to the positive measure w(z)dz, Mirsky [9] showed that
there exists a constant -y, = yn(a,b,w) such that

“p,|IL2(a,b,;w) < 'Vn”p”L2(a,b;w), pE Pn,

where P, is the space of polynomials of degree < n. Furthermore, the
best constant I',, of v, satisfies

n
Ty = sup {I|Ip'(@)l|s2(apie) | 1Pl L2(apir = 1} < {Z kllPéHz} :
PEPn k=1

In 1987, Dorfler [4] extended Mirsky’s inequality to higher order deriva-
tives and suggested a way to find the best constant involved. Guessab
and Milovanovic [7] have found the best constants for higher order
derivatives when w(z) is a weight for classical orthogonal polynomials.

In this paper, we show that Markov-Bernstein type inequalities in
weighted L2-spaces hold not only for derivatives but also for any linear
operator in P even when the measure w(z)dz is replaced by any pos-
itive Borel measure du(z). We also give another way to find the best
constant involved, which is easier to apply than Dérfler’s. In particu-
lar, we obtain discrete versions of Markov-Bernstein type inequalities
concerning for difference operators and compute the best constants in-
volved in case the measure is the one for discrete classical orthogonal
polynomials. Finally we give a similar result for linear operator on
the space of polynomials with non-negative coefficients, which extends
slightly the recent result by Chen [2].

2. Main results

We denote the degree of a polynomial p(z) by deg(p) with the con-
vention that deg(0) = —1.
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DEFINITION 2.1. A sequence of polynomials {P,(z)})_, is called
an orthonormal polynomial system (ONPS) of order N (N > 1 is an
integer or 00) if deg(P,) =n, 0 < n < N and there exists an increasing
function u(z) on R such that

/ P (x)Po(z) du(z) = 6mn, 0<m,n< N,

— 00

where 9,,,,, is the Kronecker delta.

From now on, we always assume that u(z) is an increasing function
on R such that

o0
‘ / z" du(x)
—00
We set

spec(p) = {z € R|u(x+¢) —pu(z —€) >0, for any e> 0}

and let NV + 1 be the cardinality of the set spec(u). Then there exists
a unique ONPS {P,(z)}}_, of order N relative to du(z) (see [11]).

We use the following notations: for any a with 1 < a < oo,
1

a

llclla := (Z ]ckla> fl<a<oo, |clleo :=max{lck|:0 <k <n}
k=0

<oo, n=01,2,---.

for any vector ¢ = (cg,c1,- - ,¢,) in C**! and
oo 2
ol ={ [ oPauta}’, pew.
- 00

We note that on Py, ||p|| is a norm if 0 < n < N and a semi-norm if
n>N.

Let T be any linear operator from P, into P, where n is any fixed
integer with 0 < n < N. Then T is bounded so that there is a constant
¥n(T'), depending only on n and T, such that

(2.1) TPl < v (D)lipll, P € P

We let I',(T)) be the smallest possible value of v, (T) in (2.1). That is,
I'o(T) is the operator norm of T' : T',(T) := sup ||Tp|.
llpll=1
In the following, we let {¢x(z)}2, be any sequence of polynomials

with deg(¢x) = k, k > 0, that is, {¢r(z)}$2, is a basis of P.
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THEOREM 2.1. Let T and [',(T) be the same as above. Then
DT A(m)DeT

c
T.(T) = sup
( ) CEC"+1\{O}\/7 CA(TL

where ¢ = (cg, ¢1, - ,Cn) are vectors in C**! and D =
A(n) = (aij)} j=o are matrices whose entries are given by

(Tex)(@) =) _ di.;(2)
j=0

and

)e”

(k) Ok

m = max deg(Tor)

-/ " 6u()85(z) du(a).

Proof. For any polynomial p(z) € Pp, we may write it as

p(z) =Y ckdi()-
k=0

Then, we have

n

o and

Ipll2 = / PP du@) = 3> cion [ 45(@)F(@) dua) = AT

7=0 k=0

ITol? = [ o) dute) = [ 3 Z (
- Z (Zmﬂ) 3 (En: edy

§=0 \k=0 i=0 \£=0
= (Dc")T A(m)(De").

Hence, we have

T.(T)= sup 17pl _

ckidi

=0

Jox(

) /Rfﬁj@ du(x)

peP~{0} “p“ —CEC"‘H\{O}
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THEOREM 2.2. Let T and I',(T) be the same as in Theorem 2.1. If
we assume m = max deg(TP;) < N, then

Here, D = (di)}"zo,j':‘k is the matrix whose entries are given by

m

(2.3) (TP)(z) = di.Pj(x),

=0

where {P,(x)})_, is the ONPS relative to du(z). Moreover, ['n(T)
satisfies an estimate : for any a with 1 < a < o0

(24)  max TP < Tn(T) < C(a,n) [(ITPolls- -+ (I Prl)lles

where

C(a,n)=  sup el ppg 141y,
cecn+i~ o} llell2 a b
Proof. If we take { Py(x) }1_, for {¢x ()} in the proof of Theorem
2.1, then the matrix A(n), n > 1, becomes an identity matrix since
{Pi(x)}_, is an ONPS relative to du(z). Hence, cA(n)eT = ||c||? and
s0
Cn.(T)= sup VeDTDel,
llell2=1
ceCcntl

which is the matrix form of the equation (2.2). On the other hand, for
n
any a with 1 < a < oo and for any p(z) = Y cxPr(x) in Py, Holder’s
k=0.

inequality implies

S| =

IToll € 3 kel IRl < el UTPoll -+ ITPuDI (345 =1).
k=0
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Now, let S : P, — C™*! be the linear operator defined by

S(p)=S (chPk> = (cp,C1,"** ,Cn)-
k=0

Then
lella = [15(D)la < ISPl = c(a,n)||p]-

Hence,
ITpll < Cla,n) |(ITPoll, -, ITPalllo lpll, P € Pa,

which gives the upper bound for I',,(T) in (2.4). The lower bound for
Cn(T) in (2.4) is trivial since |Px|| = 1,0 < k < n. O

Of particular interest to us are the cases when a = 1 or 2.

COROLLARY 2.3. Let T and I',(T") be the same as in Theorem 2.2.
Then

. < < .
(2.5) o22x TP <Tn(T) < v +1 oZax |7 Pr|

Proof. If we set a = 1 in (2.4), then we obtain

(2.6) o0ax |TP|| <Tn(T) < C(1,n) o02x [T Pe.

Since |lcll1 < vn + 1jc|l2, c € C T,
C(l,n) <vn+1
so that (2.5) follows from (2.6). O

When a = 2, we obtain:
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COROLLARY 2.4. Let T and I',,(T) be the same as in Theorem 2.2.
Then

1
2

@D e TRl T < {Sirne)
- - k=0

Dérfler [4] obtained the best constant T',,(T) (in a different form)
and the inequality (2.7) when u(z) is absolutely continuous so that
du(z) = w(z)dz, N = 00, and T = Ez% (see also Mirsky [9] in case
r=1).

Since T'n(T)) is the smallest value of X satisfying

eDT A(m)De”

(28) cA(n)eT

<N, ceC™t\ {0},

I'n(T) is the smallest constant A such that A\2A(n) — DTA(m)D is
positive-semi definite. By the positive-definiteness of du(z) on P,,
0 <n <N, A(n) is Hermitian for n > 0 and positive-definite for
0 <n < N and DTA(m)D is Hermitian and positive-semidefinite for
m > 0.

If A(n) and DTA(m)D commute, then they have n + 1 common
linearly independent eigenvectors {u:} such that

(2.9) Au; = piu;, DTADw; =vju;, i=0,1,---,n

since both A(n) and DT A(m)D are Hermitian (see [8]).
Now, we have the following.

THEOREM 2.5. Let T and T'n(T') be the same as in Theorem 2.1. If
A(n) and DT A(m)D commute, then

7
To(T) = ik
n(T) 2

where p; (> 0) and v; (> 0), 0 < i < n, are the eigenvalues of A(n)
and DT A(m)D respectively as in (2.9).
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Proof. Let 0 := max Y . Then, 02A(n) — DT A(m)D is positive-

semideﬁnite since it is Hermitian and has non-negative eigenvalues
o2u; - v;, 0 <i<n. Hence, I’ (T) < o. Conversely, the left hand side
of the inequality (2.8) becomes o? when ¢ = ii,, where r is an integer
such that 0 < 7 < n and o? = £=. Hence, I'n (T)>o0. O

In particular, if m < N and if we take {¢x(z)}H_o = {Pc()}R-o 50
that A(n) is the identity matrix, then I'n (T)? is equal to the largest
eigenvalue of the matrix DTD, i.e., the largest singular value of D (D
as in Theorem 2.2). This fact is observed and used by Dérfler [4] when
T is a differentiation and N = oo.

Below we give several examples illustrating Theorem 2.2 when T
is a differential or difference operator and du(z) is an orthogonalizing
measure for classical or discrete classical orthogonal polynomials.

ExXAMPLE 2.1. Consider du(z) = z%e *H(x)dz, where a > —1
and H(z) is the Heaviside step function. The corresponding ONPS

{Pn(2)}no is

n!

1
2
(@) >
I‘(n+a+1)} L (=), nz0,

P,(z) = {

where Ls,a)(a:) is the n-th Laguerre polynomial (see (3, 11]). From the
addition formula (see [11, p. 391, Problem 90])

LE+A (g 4 ) = S L, ()L (),
k=0

we can easily deduce for 0 < k <n

10 = (@ = S (T @

=0
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1
2

(_1)T{ F(n +a+1) }

=0

.

—(T(G+a+1)
Z( Ir(G+1)

)7

If we take T = £, then the relation (2.10) implies that the coefficients

in (2.3) are given by

1 T(kta+1)

=

g = { (-1 {k_ F(J+a+1)}%(k—j—1

so that

llcllz=1

k—j—r/?

0<j<k-r

otherwise

1
) ckd;;f}z.

dr n—r
r (1) = e (¥
z c€C™ U520 ' p=jtr

In general, it’s very hard to compute Fn(%;) explicitly. However, we

have

1<
m.
'rSka%(n dx”

Pyl

= max
r<k<n

("”'"(ﬂkan)%"

TG+a+)\?(k—j—1
Z( T(j+1) r—1 )Pj(‘”)

- {rrs) (s (7))

0
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Since I“Uc%l-ﬁ is decreasing (increasing) if @ > 0 (-1 < a < 0),

( 3 2
n! dr r!
(I‘(n+a+15> An < T?)?%(n”dwr Pl < <F(T+a+1)> An,
ifa>0

1 ' 1
2 2
r! dr ~ !
(F(r+a+1)) An < rrgnka%(n ”dm_"Pk” < <F(n+a+l)) An’

| if —l<a<0,

= (SR Y

=0

where

Hence the inequality (2.5) gives
4 1 1

n! dr ri(n+1
(m) Bn < Fn(dzr) = (m%) An,

if o>
@1y { *e20 | )

! 2 d" nl(n+1) z
(Wﬁs) An < Fn(w) (m Bn,
| if —1<a<0.

IA

In particular, when a = 0, we obtain

(L (72} sn(@) = {S ) T

When r = 1, Dérfler [6] obtained a sharper upper bound for I',,(d/dz)
than (2.11). When a = 0, Dérfler [5, Theorem 2] obtained a similar es-
timation as (2.12) which gives a sharper upper bound. But, the method
in [5] is not easy to extend for @ > —1 but a # 0. In particular, when
r =1 and a = 0, Turdn [12] found explicitly ', (d/dz) as

Lo L) = (25—
"de) T P mre)
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Now, consider the forward difference operator A defined by

Ap(z) =p(z +1) ~p(z), peP.
EXAMPLE 2.2. Let v(x) be a step function such that spec(v) =

{0,1,2,-- }and_]umpofz/atm—nls”—n—,n>0whereu>0
Then, the corresponding ONPS { P, ()}, relative to duv(z) is

Pa@) = /2 C(), n >0,

where C{* )( ) is the n-th Charlier polynomial (see [10]). From the
relation AC{ () = —2 C(“ 4 (z), it can be easily shown that

(2.13) A" Py(z) = (—I)T{,u"’r! <7’f) }%Pk_r(x), k>r.

If we take T = A" (1 < r < n), then the relation (2.13) implies that
the coefficients d7, in (2.3) are given by

& — { ) (=t ()E, j=k-r

0, otherwise
so that
n n L i
Lu(A) = sup (thckdﬂ?) = s (3 (F)iar)
c€C™ \520 k=0 cecntl =r \T
Ileflz=1 lel]a=1

)

Moreover, it is easy to see that the supremum is attained only when
c¢=(0,0,---,0,b), |b| = 1 by using the Lagrange multiplier. Thus, we

have .
T —r n 2
jasl < (") sl e

and equality holds if and only if p(z) = aP,(z), where a is a constant.

Dorfler [4] obtained a 81m11ar result as Example 2.2 for the operator
% and the measure e~ = dz using Hermite polynomials, which are

continuous analogues of Charlier polynomials.
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EXAMPLE 2.3. Let v(z) be a step function such that spec(v) =
{0,1,2,---} and jump of v(z) at z = n is —ngz—;r)ﬁ, n > 0, where
4>0,0<p<1 Then, the.corresponding ONPS {P,(z)}32 relative

to dv(z) is

1
PO (z) = {_“_7(“1(_7)9_} MO¥(z), n>0,

“where Mn (v )(z) is the n-th Meixner polynomial (see [10]). From the
relation AM{"*)(z) = — ﬂl“:ﬂszﬁil’“ )(z), it can be easily shown that

ATPOM () = (1) E(r, k, 7, ) PO (2),

where .
ET(7)(1 — p)" }5
E(r,k,v,u) = .
k= { Gt £
Hence, we have
”Arp(%li) ”2
_ E2 7. k,’)’,u) 2 P(‘H"":#) ]2 ll‘ir(7 + Z)

()
~ (e piT(y+r+i) Ty+9(y+7)
= B2(r,k, 7, 1 Z[P Ol iT(y+r) T(y+r+il(7)
Ly +4)l(y+7)
0<'L<oo T(y+r+i)l(v)
= E2(rak777/"’)7

< E*(r,k,v,4) m

since

r ST(r+v+1)
P(A/+ sy’) 2&____—__:1 k___ 1 ..
E[ k— z'I‘(7+r) ’ T,T‘+ ’ )
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T(y+i) . . ..
and Tt ¢ > 0, is monotone decreasing in . Therefore,

s KT()(1 - )" %
< (G )

The estimation (2.5) in Corollary 2.3 implies that

Ar)<\/—‘{ 7)1—u)’"} fgnl?é‘n{ k! }%

I‘(’Y+r) ; (k:r)!

Finally, we give a minor extension of the recent work by Chen 2],
which handles the similar extremal problem on the space of polynomials
with non-negative coefficients.

Assume that 7T is a linear operator on the space of real polynomials
and consider the following extremal problem

o IZel

Ln(T) i= sup "t

where

S, = {p(z) € Pn:p(z) = ickqﬁk(w), >0, 0<k<n}

and {¢r(x)}2, is a sequence of real polynomials with deg(¢x) = k,
k>0.

By the same arguments as before, we can see that [.(T) is the
smallest value of A such that

(2.14) c[A2A(n) — DT A(m)D]c” >0

for all ¢ = (cg,c1,-+* ,¢n) in R with ¢; > 0, 0 < ¢ < n, where
matrices A(n) and D are the same as in Theorem 2.1.
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We set DT A(m)D = (@i5)7 j=o and assume that a;; > 0, @;; > 0 for
0<4i,j<nandif a;; =0, then a;; = 0. Let

. Qi
F:= max — 1a;; >0 3.
0<i,j<n a;j

Since ¢ has all positive elements, the inequality (2.14) holds for A = &.
Hence,

(2.15) I,.(T) < 6.

THEOREM 2.6. If & occurs at i = j =r, then f‘n(T) = §, that is,

a’T"I‘
(216) 1ol < 4/ pl, pes,

e

and equality holds for p(x) = bg,(x), where b is a non-negative constant.
Proof. For ¢ = (cg,c1,-++,¢,) With ¢; = 0,4 # r and ¢, = 1, we
have

(2.17) c(62A(n) — DTA(m)D)cT =0

so that T',(T) > & and so T,.(T) = & by (2.15). Equality in (2.16)

holds for any p(z) = > cx¢r(z) in S, if and only if ¢ = (co, c1,- -+ , Cn)
k=0

satisfies (2.17), which holds, in particular, if ¢; = 0 for ¢ # r and ¢,

(> 0) is arbitrary. O

EXAMPLE 2.4. Consider du(z) = (1 — z?)®dr with & > —1 and
{#r(2)}20 = {z*}$2,. Then we have

Sn = {p(z) € P : p(z) = chxk, x>0, 0<k<n}
k=0
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For T = ), we have
1 i+j+1 F
" 1— (—1)i+s 1
aijz/ (1 -zt de = (2) B(Z+‘72+ ,a-l—l),
-1
O, ifi<r or j<r

. itieor g
iy = I ke (- 2 de = ik oBan
if 4,5 >,

where B(:,-) is the Beta function. Hence we have a;; > 0, @;; > 0 and
a;; = 0 if a;; = 0 and

s il j1 B(HI2EL o)

a;  @G-nlG-n! BEE 411)

S i— k)G —k)(2a+i+j—2k+1)

= (% 0'
itj—2k—1 (a5 #0)

Since each factor ¢=FU 1’23(2‘12:’? Zk+1) , 0 <k <r—1, increases with

7 and 7, a—l attains its maximum when i = 5 = n. Hence,
ij

52 dnn _ [l 2"1:[12a+2n—2k+1
B (=) 2n—2k—-1

ann

By Theorem 2.6, we have
D (o 20+ 2n—2k+1) %
M < n
< G 1 2 2t | el pes,

and equality holds when p(z) = bz™.

Similar results for T = jz—r, can be obtained for du(z) = z®e % dz
(@>—1) and e=*** (a > 0) as Chen [2] did only for T = d/dz.

ACKNOWLEDGEMENTS. This work is partially supported by KOSEF
(95-0701-02-01-3) and Korea Ministry of Education (BSRI 98-1420).
Authors thank Professor Dérfler for providing references [5,6] and the

referees for their very careful reading of the manuscript and many valu-
able comments.

77



(1]
(2]
3]
(4]
(5]
(6]

(7]

8]
(9}
10]
(11]

(12]

K. H. Kwon and D. W. Lee

References

P. Borwein and T. Erdélyi, Markov-Bernstein-Type Inequalities for Classes of
Polynomials with Restricted Zeros, Constr. Approx. 10 (1994), 411-425.

W. Chen, Some inequalities of algebraic polynomials with nonnegative coeffi-
cients, Trans. Amer. Math. Soc. 347 (1995), 2161-2167.

T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach,
N.Y., 1977.

P. Dérfier, New inequalities of Markov type, SIAM J. Math. Anal. 18 (1987),
490-494.

P. Dérfler, A Markov Type Inequality for Higher Derivatives of Polynomials,
Mh. Math. 109 (1990), 113-122.

P. Dérfler, Uber die bestmdgliche Konstante in Markov-Ungleichungen mit
Laguerre-Gewicht, Sitzungsber. Abt. II, Osterr. Akad. Wiss. Math. Naturwiss.
K1 200 (1991), 13-20.

A. Guessab and G. V. Milovanovi¢, Weighted L2 —analogues of Bernstein’s in-
equality and classical orthogonal polynomials, J. Math. Anal. Appl. 182 (1994),
244-249.

P. Lancaster and M. Tismenetsky, The Theory of Matrices (2nd, ed.), Acad.
Press, N.Y., 1985.

L. Mirsky, An inequality of the Markov-Bernstein type for polynomials, SIAM
J. Math. Anal. 14 (1983), 1004-1008.

A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal polyno-
mials of a Discrete Variable, Springer-Verlag, N.Y., 1991.

G. Szegd, Orthogonal Polynomials, AMS Coll. Publ. Vol 23, Providence R. I,
1939.

P. Turdn, Remark on a theorem by Erhard Schmidt, Mathematica (Cluj) 2
(1960), 373-378.

K. H. KwoN, DEPARTMENT OF MATHEMATICS, KAIST, TAEJON 305-701, KOREA
E-mail: khkwon@jacobi.kaist.ac.kr

D. W. LEg, ToPOLOGY AND GEOMETRY RESEARCH CENTER, KYUNGPOOK Na-
TIONAL UNIVERSITY, TAEGU 702-701, KOREA
E-mail: dwlee@gauss.kyungpook.ac.kr

78



