• Title/Summary/Keyword: gamma correction

Search Result 198, Processing Time 0.022 seconds

Design of Source Driver for QVGA-Scale LDI Using Mixed Driving Method (Mixed Driving 방식을 이용한 QVGA급 LDI의 Source Driver 설계)

  • Kim, Hak-Yun;Ko, Young-Keun;Lee, Sung-Woo;Choi, Ho-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.40-47
    • /
    • 2009
  • In this paper, we present the design of a source driver of QVGA scale TFT-LCD driver IC which uses a mixed driving method and performs $\gamma$-correction to improve image. The source driver with 240 RGB ${\times}$ 320 dots resolution drives a TFT-LCD panel through 720 channels and implements 262k colors using 18-bit RGB data format. The mixed driving method is a mixture the channel amp. driving method with high drivability and the gray amp. driving method with small area, which remarkably reduces channel driver areas. The driver has been designed using the $0.35{\mu}m$ Magnachip embedded DRAM technology and simulated using the HSPICE simulator. The results show that our source driver operates well with y-correction and the channel driver has $17{\mu}s$ channel driving time with only 78 driving amplifiers and control logic.

Pulse pileup correction method for gamma-ray spectroscopy in high radiation fields

  • Lee, Minju;Lee, Daehee;Ko, Eunbie;Park, Kyeongjin;Kim, Junhyuk;Ko, Kilyoung;Sharma, Manish;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1029-1035
    • /
    • 2020
  • The detector suffers from pulse pileup by overlapping of the signals when it was used in high radiation fields. The pulse pileup deteriorates the energy spectrum and causes count losses due to random co-incidences, which might not resolve within the resolving time of the detection system. In this study, it is aimed to propose a new pulse pileup correction method. The proposed method is to correct the start point of the pileup pulse. The parameters are obtained from the fitted exponential curve using the peak point of the previous pulse and the start point of the pileup pulse. The amplitude at the corrected start point of the pileup pulse can be estimated by the peak time of the pileup pulse. The system is composed of a NaI (Tl) scintillation crystal, a photomultiplier tube, and an oscilloscope. A 61 μCi 137Cs check-source was placed at a distance of 3 cm, 5 cm, and 10 cm, respectively. The gamma energy spectra for the radioisotope of 137Cs were obtained to verify the proposed method. As a result, the correction of the pulse pileup through the proposed method shows a remarkable improvement of FWHM at 662 keV by 29, 39, and 7%, respectively.

Effects of Use of the Iodine Contrast Medium on Gamma Camera Imaging (요오드 조영제 사용이 감마카메라 영상에 미치는 영향)

  • Pyo, Sung-Jae;Cho, Yun-Ho;Choi, Jae-Ho
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.557-564
    • /
    • 2016
  • Effects of Gamma camera imaging on gamma ray counting rates as a function of use and density of the iodine contrast medium currently in primary use for clinics, and changes in gamma ray counting rates as a function of the contrast medium status upon attenuation correction using a CT absorption coefficient in an SPECT/CT attenuation correction will be considered herein. For experimental materials used $^{99m}TcO_4$ 370 MBq and Pamiray 370 mg, Iomeron 350 mg, Visipaque 320 mg, Bonorex 300 mg of iodine contrast medium. For image acquisition, planar imaging was consecutively filmed for 1, 2, 3, 4, 5 min, respectively, 30 min after administration of $^{99m}TcO_4$. while 60 views were filmed per frame for 20 min at 55 min for the SPECT/CT imaging. In planar imaging, the gamma ray counting rates as a function of filming time were reduced showing a statistically significant difference when mixed according to the type of contrast medium density rather than when the radioactive isotope $^{99m}TcO_4$ and the saline solution were mixed. In the tomography for mixing of the radioactive isotope $^{99m}TcO_4$ and saline solution, the mean counting rate without correction by the CT absorption coefficient is $182{\pm}26counts$, while the counting rate with correction by the CT absorption coefficient is $531.3{\pm}34counts$. In the tomography for mixing of the radioactive isotope $^{99m}TcO_4$ and the saline solution with the contrast medium, the mean values before attenuation correction by CT absorption coefficient were $166{\pm}29$, $158.3{\pm}17$, $154{\pm}36$, and $150{\pm}33counts$ depending on the densities of the contrast medium, while the mean values after attenuation correction were $515{\pm}03$, $503{\pm}10$, $496{\pm}31$, and $488.7{\pm}33counts$, showing significant differences in both cases when comparatively evaluated with the imaging for no mixing of the contrast medium. Iodine contrast medium affects the rate of gamma ray. Therefore, You should always be preceded before another test on the day of dignosis.

Development of Automatic Gamma Optimization System for Mobile TFT-LCD (DSP를 이용한 모바일 TFT-LCD의 자동 감마 최적화 시스템 개발)

  • Cho, Nae-Soo;Ryu, Jee-Youl;Park, Chul-Woo;Kwon, Woo-Hyen
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.323-329
    • /
    • 2009
  • This paper presents an automatic LCD gamma control system using gamma curve optimization. It controls automatically gamma adjustment registers in mobile LCD driver IC to reduce gamma correction error and adjusting time. The proposed gamma system contains Module-Under-Test (MUT, LCD module), PC installed with program, multimedia display tester for measuring luminance, and control board for interface between PC and LCD module. Proposed algorithm and program are applicable for most of the LCD modules. It is realized to calibrate gamma values of 1.8, 2.0, 2.2 and 3.0. The control board is designed with DSP and FPGA, and it supports various interfaces such as RGB and CPU. Developed automatic gamma control system showed significantly reduced gamma adjusting time of 240 sec. and much less average gamma error of 11% than 42h and 27% with conventional manual method. We believe that the proposed system is very useful to provide high-quality LCD and to improve production process.

Rear Vehicle Detection Method in Harsh Environment Using Improved Image Information (개선된 영상 정보를 이용한 가혹한 환경에서의 후방 차량 감지 방법)

  • Jeong, Jin-Seong;Kim, Hyun-Tae;Jang, Young-Min;Cho, Sang-Bok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.96-110
    • /
    • 2017
  • Most of vehicle detection studies using the existing general lens or wide-angle lens have a blind spot in the rear detection situation, the image is vulnerable to noise and a variety of external environments. In this paper, we propose a method that is detection in harsh external environment with noise, blind spots, etc. First, using a fish-eye lens will help minimize blind spots compared to the wide-angle lens. When angle of the lens is growing because nonlinear radial distortion also increase, calibration was used after initializing and optimizing the distortion constant in order to ensure accuracy. In addition, the original image was analyzed along with calibration to remove fog and calibrate brightness and thereby enable detection even when visibility is obstructed due to light and dark adaptations from foggy situations or sudden changes in illumination. Fog removal generally takes a considerably significant amount of time to calculate. Thus in order to reduce the calculation time, remove the fog used the major fog removal algorithm Dark Channel Prior. While Gamma Correction was used to calibrate brightness, a brightness and contrast evaluation was conducted on the image in order to determine the Gamma Value needed for correction. The evaluation used only a part instead of the entirety of the image in order to reduce the time allotted to calculation. When the brightness and contrast values were calculated, those values were used to decided Gamma value and to correct the entire image. The brightness correction and fog removal were processed in parallel, and the images were registered as a single image to minimize the calculation time needed for all the processes. Then the feature extraction method HOG was used to detect the vehicle in the corrected image. As a result, it took 0.064 seconds per frame to detect the vehicle using image correction as proposed herein, which showed a 7.5% improvement in detection rate compared to the existing vehicle detection method.

Flicker Reduction Algorithm using Gamma Correction Parameter (감마보정 요소를 이용한 동영상 플리커 제거 알고리즘)

  • Choi, Heon-Hoi;Lee, Im-Geun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.397-400
    • /
    • 2010
  • The changing light condition of scene cause the luminance fluctuation of the captured image sequences. this artifact is called flicker, and would be easily recognized as visually unstable fluctuation. As the flicker degrades the performance of extracting useful information from image sequences, such as motion information or segmentation, it should be correction and linear flicker model. The algorithm model the flicker effects as a linear system with gain and offset parameter and estimates gain parameter with Gamma correction. The flicker reduction is performed by applying these parameters inversely th the ordinal sequences. To show the performance, we test out algorithm th the ground-truth sequences with the artificially added luminance fluctuation and real sequence with object motion.

  • PDF

Image Enhancement Technology for Improved Object Recognition in Car Black Box Night

  • Lee, Kyedoo;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.168-174
    • /
    • 2017
  • Videos recorded on surveillance cameras or by car black boxes at night have distorted images due to illumination variation. Therefore, it is difficult to analyze morphological characteristics of objects, and it is limiting to use such distorted images as evidence in traffic accidents. Image restoration is performed by amplifying the brightness of nighttime images using linearized gamma correction to increase their contrast (which destroys visual information) and by minimizing degradation factors caused by irregular traveling.

Real time Image Processor for Reproduction of Gray Levels in Dark Areas on Plasma Display Panel (PDP) (플라즈마 디스플레이 패널의 어두운 영역에서의 계조 재현을 위한 실시간 영상처리기)

  • Lee, Chang-Hun;Park, Seung-Ho;Gang, Jin-Gu;Kim, Chun-U
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.1
    • /
    • pp.46-54
    • /
    • 2002
  • Plasma Display Panel (PDP) is required to be both the determination of white point of each gray level and the inverse gamma correction since no-balanced RGB cell and linear property of PDP, respectively. However, these two methods cause degradation of grey level representation and undesirable false contour in the dark areas on PDP. In this paper, we implemented real time image processor of the proposed error diffusion algorithm and unsharp masking operation to protect the blurring image caused by the error diffusion. Experimental results showed drastic improvements of gray level representation and reduction of undesirable false contour.

A Study of Improved Auto Exposure System for Digital Still Camera Using Fuzzy Logic (소형화된 디지털카메라의 AE 시스템 개선에 관한 연구)

  • Cho, Sun-Ho;Lee, Sang-Yong;Tak, In-Jae;Park, Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.798-803
    • /
    • 2007
  • In case of minimized digital camera and mobile digital camera, it's difficult to get the high quality image by conventional AE(Auto Exposure) algorithm because of restriction of system organization. In this paper, a new algorithm that adopts a target setting, a compensation of feedback delay and a gamma correction, etc, are suggested for improving a noise increase and an output sensitivity decrease due to system minimization. We also suggest a method using fuzzy logic which can decide more effectively the ES(Electric Shutter) value and the AGC(Analog Gain Control) value than conventional system.

An Improved AE System for Mobile Digital Still Camera (모바일 디지털카메라 모듈에 대한 개선된 AE 알고리즘 구현)

  • Cho, Sun-Ho;Kim, Dong-Han;Park, Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.426-431
    • /
    • 2008
  • In this paper, an improved AE system for digital still camera is proposed. AE system is auto exposure system to maintain optimized brightness of output image. But there is limitation for mobile devices to get high quality image with the conventional AE algorithm, because of organizational restriction of system. The conventional research has been studied only electronic shutter and AGC on the AE algorithm. In this paper, we suggest new AE algorithm included target setting, frame delay, Gamma Correction as well as electronic shutter and AGC to get high quality image. The proposed algorithm show improved result at control speed and ability of luminance expression.