• 제목/요약/키워드: gallium nitride thin film

검색결과 7건 처리시간 0.021초

MOCVD of GaN Films on Si Substrates Using a New Single Precursor

  • Song, Seon-Mi;Lee, Sun-Sook;Yu, Seung-Ho;Chung, Taek-Mo;Kim, Chang-Gyoun;Lee, Soon-Bo;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권7호
    • /
    • pp.953-956
    • /
    • 2003
  • Hexagonal GaN (h-GaN) films have been grown on Si(111) substrates by metal organic chemical vapor deposition using the azidodiethylgallium methylamine adduct, Et₂Ga(N₃)·NH₂Me, as a new single precursor. Deposition was carried out in the substrate temperature range 385-650 °C. The GaN films obtained were stoichiometric and did not contain any appreciable amounts of carbon impurities. It was also found that the GaN films deposited on Si(111) had the [0001] preferred orientation. The photoluminescence spectrum of a GaN film showed a band edge emission peak characteristic of h-GaN at 378 nm.

패턴화된 사파이어 기판 위에 증착된 AlN 버퍼층 박막의 에피층 구조의 광학적 특성에 대한 영향 (Effects of AlN buffer layer on optical properties of epitaxial layer structure deposited on patterned sapphire substrate)

  • 박경욱;윤영훈
    • 한국결정성장학회지
    • /
    • 제30권1호
    • /
    • pp.1-6
    • /
    • 2020
  • 본 연구에서는 패턴화된 사파이어 기판 위에 HVPE(Hydride Vapor Phase Epitaxy System) 법에 의해 50 nm 두께의 AlN thin film을 증착한 뒤, 에피층 구조가 MO CVD에서 성장되었다. AlN 버퍼층 박막의 표면형상이 SEM, AFM에 의해서, 에피층 구조의 GaN 박막의 결정성은 X-선 rocking curve에 의해 분석되었다. 패턴화된 사파이어 기판 위에 증착된 GaN 박막은, 사파이어 기판 위에 증착된 GaN 박막의 경우보다 XRD 피크 세기가 다소 높은 결과를 나타냈다. AFM 표면 형상에서 사파이어 기판 위에 AlN 박막이 증착된 경우, GaN 에피층 박막의 p-side 쪽의 v-pit 밀도가 상대적으로 낮았으며, 결함밀도가 낮게 관찰되었다. 또한, AlN 버퍼층이 증착된 에피층 구조는 AlN 박막이 없는 에피층의 광출력에 비해 높은 값을 나타냈다.

TEM Stud of GaN Thick Film Crystals Grown by HVPE

  • 송세안;이성국
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.121-121
    • /
    • 1999
  • Gallium nitride (GaN) semiconductor is intensively under investigation for commercialization of short wavelength light emitting devices and laser diodes. One of serious obstacles to overcome is to reduce the defect density in GaN film grown by various techniques such as MOCVD, HVPE, etc. Many research groups including SAIT are trying to improve the defect density to 106-107/cm2 from the level of 108-1010/cm2. We have investigated epitaxial growth behaviour of GaN thin and thick films under hidride vapour phase epitaxy (HVPE) condition. In this report, we present the microstructural and crystallographical characteristics of the GaN films grown on sapphire (0001) substrate which were studied by both conventional and high-resolution transmission electron microscopy (TEM). Also we present some microscopic analysis results obtained from GaN films grown by ELO(dpitzsial lateral overgrowth)-HVPE and from GaN quantum well structures grown by MOCVD. Another serious problem in growing GaN thick film by HVPE is internal micro-cracks. We also comment the origin of the micro-crack.

  • PDF

Growth and characterization of molecular beam epitaxy grown GaN thin films using single source precursor with ammonia

  • Chandrasekar, P.V.;Lim, Hyun-Chul;Chang, Dong-Mi;Ahn, Se-Yong;Kim, Chang-Gyoun;Kim, Do-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.174-174
    • /
    • 2010
  • Gallium Nitride(GaN) attracts great attention due to their wide band gap energy (3.4eV), high thermal stability to the solid state lighting devices like LED, Laser diode, UV photo detector, spintronic devices, solar cells, sensors etc. Recently, researchers are interested in synthesis of polycrystalline and amorphous GaN which has also attracted towards optoelectronic device applications significantly. One of the alternatives to deposit GaN at low temperature is to use Single Source Molecular Percursor (SSP) which provides preformed Ga-N bonding. Moreover, our group succeeds in hybridization of SSP synthesized GaN with Single wall carbon nanotube which could be applicable in field emitting devices, hybrid LEDs and sensors. In this work, the GaN thin films were deposited on c-axis oriented sapphire substrate by MBE (Molecular Beam Epitaxy) using novel single source precursor of dimethyl gallium azido-tert-butylamine($Me_2Ga(N_3)NH_2C(CH_3)_3$) with additional source of ammonia. The surface morphology, structural and optical properties of GaN thin films were analyzed for the deposition in the temperature range of $600^{\circ}C$ to $750^{\circ}C$. Electrical properties of deposited thin films were carried out by four point probe technique and home made Hall effect measurement. The effect of ammonia on the crystallinity, microstructure and optical properties of as-deposited thin films are discussed briefly. The crystalline quality of GaN thin film was improved with substrate temperature as indicated by XRD rocking curve measurement. Photoluminescence measurement shows broad emission around 350nm-650nm which could be related to impurities or defects.

  • PDF

KOH계열 수용액을 이용한 GaN 박막의 photo-assisted 식각 특성 (Photo-assisted GaN wet-chemical Etching using KOH based solution)

  • 이형진;송홍주;최홍구;하민우;노정현;이준호;박정호;한철구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.339-339
    • /
    • 2010
  • Photo-assisted wet chemical etching of GaN thin film was studied using KOH based solutions. A $2{\mu}m-2{\mu}m$ titanium line-and-space pattern was used as a etching mask. It is found that the etching characteristics of the GaN thin film is strongly dependent on the pattern direction by unisotropic property of KOH based solution. When the pattern was aligned to the [$11\bar{2}0$] directions, ($10\bar{1}n$)-facet is revealed constructing V-shaped sidewalls.

  • PDF

패턴된 GaN 에피층 위에 ZnO 막대의 수직성장 (Growth of vertically aligned Zinc Oxide rod array on patterned Gallium Nitride epitaxial layer)

  • 최승규;이성학;장재민;김정아;정우광
    • 한국재료학회지
    • /
    • 제17권5호
    • /
    • pp.273-277
    • /
    • 2007
  • Vertically aligned Zinc Oxide rod arrays were grown by the self-assembly hydrothermal process on the GaN epitaxial layer which has a same lattice structure with ZnO. Zinc nitrate and DETA solutions are used in the hydrothermal process. The $(HfO_2)$ thin film was deposited on GaN and the patterning was made by the photolithography technique. The selective growth of ZnO rod was achieved with the patterned GaN substrate. The fabricated ZnO rods are single crystal, and have grown along hexagonal c-axis direction of (002) which is the same growth orientation of GaN epitaxial layer. The density and the size of ZnO rod can be controlled by the pattern. The optical property of ordered array of vertical ZnO rods will be discussed in the present work.

Heat Treatment of Carbonized Photoresist Mask with Ammonia for Epitaxial Lateral Overgrowth of a-plane GaN on R-plane Sapphire

  • Kim, Dae-sik;Kwon, Jun-hyuck;Jhin, Junggeun;Byun, Dongjin
    • 한국재료학회지
    • /
    • 제28권4호
    • /
    • pp.208-213
    • /
    • 2018
  • Epitaxial ($11{\bar{2}}0$) a-plane GaN films were grown on a ($1{\bar{1}}02$) R-plane sapphire substrate with photoresist (PR) masks using metal organic chemical vapor deposition (MOCVD). The PR mask with striped patterns was prepared using an ex-situ lithography process, whereas carbonization and heat treatment of the PR mask were carried out using an in-situ MOCVD. The heat treatment of the PR mask was continuously conducted in ambient $H_2/NH_3$ mixture gas at $1140^{\circ}C$ after carbonization by the pyrolysis in ambient $H_2$ at $1100^{\circ}C$. As the time of the heat treatment progressed, the striped patterns of the carbonized PR mask shrank. The heat treatment of the carbonized PR mask facilitated epitaxial lateral overgrowth (ELO) of a-plane GaN films without carbon contamination on the R-plane sapphire substrate. Thhe surface morphology of a-plane GaN films was investigated by scanning electron microscopy and atomic force microscopy. The structural characteristics of a-plane GaN films on an R-plane sapphire substrate were evaluated by ${\omega}-2{\theta}$ high-resolution X-ray diffraction. The a-plane GaN films were characterized by X-ray photoelectron spectroscopy (XPS) to determine carbon contamination from carbonized PR masks in the GaN film bulk. After $Ar^+$ ion etching, XPS spectra indicated that carbon contamination exists only in the surface region. Finally, the heat treatment of carbonized PR masks was used to grow high-quality a-plane GaN films without carbon contamination. This approach showed the promising potential of the ELO process by using a PR mask.