• Title/Summary/Keyword: galena

Search Result 174, Processing Time 0.021 seconds

Direct Acid Leaching of Zinc from Marmatite Ores 3 Acid Leaching of Marmatite Ores and the Electrode Potential Behavior of Sulfides (Marmatite 鑛의 直接酸浸出에 關한 硏究 (第3報) Marmatite 鑛의 酸浸出과 黃化物의 電極電位에 關한 硏究)

  • Kim Jae Won
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.38-43
    • /
    • 1967
  • In order to explain the positive catalytic action of copper compound for the rate of leaching of zinc sulfide minerals, the electrode and redox potentials of both synthetic and natural sulfides were measured at various conditions of temperatures and pressures. The potentials of Chalcopyrite and copper sulfide were considerably higher than that of zinc sulfide, whereas lead sulfide and Galena had slightly lower potentials than that of zinc sulfide. At elevated temperatures and pressures, the same tendency was obtained. By means of comparing the calculated and measured values of potentials for sulfides, it was suggested that the electrode potentials in acid solution were generated by oxidation of sulfur ion. As a result, it was concluded that the catalytic action of copper compound in the leaching of synthetic zinc sulfide should be arised from the galvanic action between sulfides keeping intimate contact one another in which copper sulfide worked as cathodic and zinc sulfide as anodic part analogous to the metal corrosion under galvanic action.

  • PDF

Ag-Sb Minerals from the Yeonhwa 1 Mine (제 1 연화광산에서 산출되는 Ag-Sb계의 광물)

  • 정재일;김형수;전서령
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.141-146
    • /
    • 1991
  • Minerals of system Ag-Sb have been found in iead-zinc (-silver) ores from the Dongjeom and the Taebaeg ore deposits, which were formed at later stage of the Yeonhwa 1 mine mineralization. The Ag-Sb minerals are intergrown intimately with galena, pyrargyrite and alabandite. Their chemical compositions as determined by electron microprobe analyser show that they are chracterized by relatively high content of S, up to 5.89 atomic percent. Also the composition of the minerals may be separated into two: Ag3.89 Sb1.00-Ag7.19 Sb1.00 and Ag2.96 Sb1.00-Ag4.00 Sb1.00.

  • PDF

Au-Ag-Te Mineralization by Boiling and Dilution of Meteoric Ground-water in the Tongyeong Epithermal sold System, Korea: Implications from Reaction Path Modeling (광화유체의 비등과 희석에 의한 통영 천열수계 Au-Ag-Te 장화작용에 대한 반응경로 모델링)

  • Maeng-Eon Park;Kyu-Youl Sung
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.507-522
    • /
    • 2001
  • At the Tongyeong mine, quartz, rhodochrosite (kutnahorite), muscovite, illite, pyrite, galena, chalcopyrite. sphalerite, acanthite, and hessite are the principal vein minerals. They were deposited under epithermal conditions in two stages. Ore mineral assemblages and associated gangue phases in stage can be clearly divided into two general associations: an early cycle (band) that appeared with introduction of most of the sulfides and electrum, and a later cycle in which base metal and carbonate-bearing assemblages (mostly rhodochrosite) became dominant. Tellurides and some electrum occur as small rounded grains within subhedral-to euhedral pyrite or anhedral galena in stageII. Sulfide mineralization is zoned from pyrite to galena and sphalerite. We have used computer modeling to simulate formation of four stages of vein genesis. The reaction of a single fluid with andesite host rock at 28$0^{\circ}C$, isobaric cooling of a single fluid from 26$0^{\circ}C$ to 12$0^{\circ}C$, and boiling and mixing of a fluid with both decreasing pressure and temperature were studied using the CHILLER program. Calculations show that the precipitation of alteration minerals is due to fluid-andesite interaction as temperature drops. Speciation calculations confirm that the hydrothermal fluids with moderately high salinities and pH 5.7 (acid), were capable of transporting significant quantities of base metals. The abundance of gold in fluid depends critically on the ratio of total base metals and iron to sulfide in the aqueous phase because gold is transported as an Au(HS)$_2$- complex, which is sensitive to sulfide activity. Modeling results for Tongyeong mineralization show strong influence of shallow hydrogenic processes such as boiling and fluid mixing. The variable handing in stageII mineralization is best explained by maltiple boilings of hydrothermal fluid followed by lateral mixing of the fluid with overlying diluted, steam-heated ground water. The degree of similarity of calculated mineral assemblages and observed electrum composition and field relationships shows the utility of the numerical simulation method in identifying chemical processes that accompany boiling and mixing in Te-bearing Au-Ag system. This has been applied in models to narrow the search area for epithermal ores.

  • PDF

Lead Isotopic Study on the Dongnam Fe-Mo Skarn Deposit (동남 스카른 광상에 대한 납 동위원소 연구)

  • Chang, Ho Wan;Cheong, Chang Sik;Park, Hee In;Chang, Byung Uck
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 1995
  • In Dongnam area, Cretaceous igneous rocks, such as diorite, porphyritic granite, and quartz porphyry intruded Paleozoic sedimentary rocks, such as Myobong slate and Pungchon limestone. The Dongnam Fe-Mo skarn deposits were imposed on the diorite(endoskarn) and the Myobong slate(exoskarn). The ore deposits consist mainly of magnetite and molybdenite with small amounts of sulfides, such as galena, sphalerite, pyrite, chalcopyrite, and pyrrhotite. The igneous rocks show nearly constant $^{206}Pb/^{204}Pb(18.80{\sim}19.06)$ and $^{207}Pb/^{204}Pb(15.71{\sim}15.72)$ ratios. Their $^{207}Pb/^{204}Pb$ ratios higher than the typical ratios of orogene suggest that the igeneous rocks were formed from lower crust(or mantle) - derived magma excessively contaminated by upper crustal materials such as high radiogenic Precambrian basement rocks. The lead isotopic compositions of the igneous rocks, the Pungchon limestone, and the ore minerals show a well defined linear in $^{206}Pb/^{204}Pb$ - $^{207}Pb/^{204}Pb$ plot. The lead isotopic compositions of the igneous rocks are similar to those of magnetite and galena, which were formed at early skarn stage and significantly lower than those of altered quartz porphyry, molybdenites, and pyrite, which were formed at late epithermal alteration stage. Considering the systematic variation of the lead isotopic compositions in the ore minerals according to hydrothermal stages, the variation may be due to a relative variation in surrounding rock(Pungchon limestone) involvement in hydrothermal ore solution leaching the surrounding rock. Therefore, the variation of the lead isotopic compositions in ore minerals can be modeled in terms of the mixing of the leads derived from the igneous rocks as low radiogenic source and the surrounding rock(Pungchon limestone) as high radiogenic source.

  • PDF

Applicability Evaluation of Tailing Admixture as Grout Material (그라우트 재료로서 광물찌꺼기 혼화재의 활용 가능성 평가)

  • Kim, Daehyeon;Noh, Jeongdu;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.110-119
    • /
    • 2016
  • The purpose of this study is to evaluate the applicability of tailing in the ${\bigcirc}{\bigcirc}$ mine as a grout material. For the purpose, XRD analysis was performed for mineralogical properties of tailing. In addition, flow, velocity, and uniaxial compressive strength tests were carried out for physical and mechanical properties of a grout material with the mixing ratio of cement and tailing and curing periods. By the result of XRD analysis, tailing of the mine was found to mostly consist of quartz, galena, and pyrite. The flow observed by the flow test showed decreasing tendency with increasing the mixing ratio of tailing. The velocity was also lowered with increasing the mixing ratio of tailing regardless of curing periods. The uniaxial compressive strength as well as Young's modulus also show a tendency to decrease with increasing the mixing ratio of tailing independently on the curing periods. Considering only the physical and mechanical properties of a grout material with tailing, the results are considered to be sufficiently used as a grout material. However, since metallic minerals such as galena and pyrite in tailing contents and these are causing environmental contamination, countermeasures should be considered for this problem in future.

Occurrence and Mineral Chemistry of Pb-Ag-Bi-S System Minerals in the Nakdong As-Bi Deposits, South Korea (낙동 비소-비스무스 광상의 Pb-Ag-Bi-S계 광물의 산출양상과 화학조성)

  • Shin, Dong-Bok
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.643-651
    • /
    • 2006
  • The Pb-Ag-Bi-S system minerals such as galena-matildite solid solutions, cosalite and heyrovskyite occur in the Nakdong As-Bi deposits. Galena-matildite solid solutions commonly coexisting with native bismuth fill in microfractures of pyrite grains and form irregular shapes. Cosalite forms composite grains including native bismuth, heyrovskyite and Bi-Te-S system minerals in the matrix of quartz vein. Matildite from the Nakdong deposits has an end member composition, $Ag_{1.07-1.11}Bi_{1.12-1.20}S_2$, and an excess concentration of $0.3{\sim}2.4$ mole % $Bi_2S_3$ compared to the stoichiomeoic value. PbS concentrations in $PbS-AgBiS_2$ solid solutions do not exceed 54 mole %. The average chemical composition of cosalite in the study area is $Pb_{1.79}Bi_{2.29}Ag_{0.12}S_5$. Pb is slightly depleted compared to the ideal composition, but the concentrations of Ag and Cu reach as much as 1.47 wt.% and 0.27 wt.%, respectively. Heyrovskyite has the chemical formula of $Pb_{5.01}Ag_{0.26}Bi_{2.70}S_9$ suggesting that there occurs the coupled substitution of $2Bi^{3+}$ for $3Pb^{2+}$ as well as that of $Ag^++Bi^{3+}$ for $2Pb^{2+}$. The genetic condition of Pb-Ag-Bi-S system minerals can be confined to the temperature of $220{\sim}270^{\circ}C$ and the pressure below 200 bars.

Element Dispersion by the Wallrock Alteration of Janggun Lead-Zinc-Silver Deposit (장군 연-아연-은 광상의 모암변질에 따른 원소분산)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.623-641
    • /
    • 2012
  • The Janggun lead-zinc-silver deposit is hydrothermal-metasomatic deposit. We have sampled wallrock, hydrother-maly-altered rock and lead-zinc-silver ore vein to study the element dispersion during wallrock alteration. The hydrothermal alteration that is remarkably recognized at this deposit consists of rhodochrositization and dolomitization. Wallrock is dolomite and limestone that consisit of calcite, dolomite, quartz, phlogopite and biotite. Rhodochrosite zone occurs near lead-zinc-silver ore vein and include mainly rhodochrosite with amounts of calcite, dolomite, kutnahorite, arsenopyrite, pyrite, chalcopyrite, sphalerite, galena and stannite. Dolomite zone occurs far from lead-zinc-silver ore vein and is composed of mainly dolomite and minor calcite, rhodochrosite, pyrite, sphalerite, chalcopyrite, galena and stannite. The correlation coefficients among major, trace and rare earth elements during wallrock alteration show high positive correlations(dolomite and limestone = $Fe_2O_3(T)$/MnO, Ga/MnO and Rb/MnO), high negative correlations(dolomite = MgO/MnO, CaO/MnO, $CO_2$/MnO, Sr/MnO; limestone = CaO/MnO, Sr/MnO). Remarkable gain elements during wallrock alteration are $Fe_2O_3(T)$, MnO, As, Au, Cd, Cu, Ga, Pb, Rb, Sb, Sc, Sn and Zn. Remarkable loss elements are CaO, $CO_2$, MgO and Sr. Therefore, elements(CaO, $CO_2$, $Fe_2O_3(T)$, MgO, MnO, Ga, Pb, Rb, Sb, Sn, Sr and Zn) represent a potential tools for exploration in hydrothermal-metasomatic lead-zinc-silver deposits.

Occurence of Zn-Pb Deposits in Danjang-Myeon, Milyang Area (밀양 단장면 일대에 발달하는 아연-연 광화대의 산출특성)

  • Kwak, Ji Young;Kang, Chang Won;Joo, Soo Young;Jeong, Jae Han;Choi, Jin Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.279-292
    • /
    • 2015
  • New occurrences of large-scaled Zn-Pb deposits are recently found in the Danjang-myeon, Milyang. They are skarn-type deposits which replaced the intercalated limestone beds in the Jeonggaksan Formation. This study aims at characterizing occurrences, mineralogy, and chemistry of Zn-Pb ores and skarn minerals. Skarn orebodies are mainly found in 3 areas, named Gukjeon-ri, Gorye-ri, and Gucheon-ri orebodies, where sphalerite found as main ore mineral in 200-300 m in height and amount of galena increases as altitude does. Ores are dark grey to dark green in color and closely related with clinopyroxene zone. They occur with hedenbergite, grossular, actinolite, epidote, and small amounts of axinite, calcite, and quartz. Main ore mineral is sphalerite which includes tiny spotted grains of galena and chalcopyrite and becomes rich in grade in association with clinopyroxene and epidote. FeS contents in sphalerite show relatively wide range between 1.53 and 23.07 mole%, whose contents intend to increase towards biotite granite known as ore-related igneous rocks. CdS contents are in the range of 0.22-0.93 mole%, showing decrease tendency from southwest (Gukjeon-ri) to northeast (Gucheon-ri). Zn-Pb deposits developed in Danjang-myeon reveal decrease in temperature with increase of altitude, leading to gradual changes in compositions of ore and skarn minerals.

The Possibility of Gold Recovery from the Iron-Hydroxide in the Acid Mine Drainage by Lead-Fire Assay (납-시금법을 이용한 산성광산배수 철수산화물로부터 Gold 회수 가능성 연구)

  • Cho, Kang-Hee;Kim, Bong-Ju;Kim, Jin-Hyung;Choi, Nag-Choul;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.477-484
    • /
    • 2013
  • In order to recover gold from iron-hydroxide in acid mine drainage, a lead-fire assay has been used. Acid mine drainage is generated from mining waste rocks, and iron-hydroxide precipitates from acid mine drainage, which severely contaminates the area surrounding the mine. Iron-hydroxide samples contain on average 520.29 mg/kg of Fe, 4,414.62 mg/kg sulfur, and 16.19 mg/kg Au. In an XRD analysis, quartz and goethite were observed along with the iron-hydroxide. Using a lead-fire assay, the recovery of pure gold was on average 0.174 g/ton from the iron-hydroxide, whereas the gold not recovered in the process was on average 1.37 mg/kg. This unrecovered gold was lost to the glass slag due to the galena and lead formation. The galena and lead in the glass slag was identified through XRD.

Gravity Separation Characteristic for the Gold.Silver Ores on the Philippine Mankayan District (필리핀 만카얀 지역 금.은 광석의 비중선별 특성)

  • Kim, Hyung-Seok;Chae, Soo-Chun;Kim, Jeong-Yun;Sohn, Jeong-Soo;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.383-395
    • /
    • 2008
  • To enhance the grade and recovery rate of the gold/silver ores which yield at Philippine Mankayan mine, we studied the characteristics which are the geologic and mineralogical features of gold and silver ore, the liberation by crushing and grinding, the separation by sieving and shaking table. Gold/silver ore is composed of the sulfide minerals like pyrite, sphalerite, galena; and the gangue minerals which is quartz, clay. Gold/silver element are mainly contained in a sulfide minerals like pyrite, sphalerite and galena. To increase the liberation rate of sulfide minerals containing gold/silver element, the gold/silver ore has to be grounded under $100{\mu}m$ very finely because the crystal size of sulfide minerals is distributed from $1{\mu}m$ to $100{\mu}m$. The liberation rate of gold/silver ore increases to 92% when the particle size ($d_{90}$) of ore is grounded below $100{\mu}m$ by jaw crusher $\to$ cone crusher $\to$ rod mill by steps. The grade and recovery of sulfide minerals could not be enhanced by sieving separation because those crystal size is distributed homogeneously below $100{\mu}m$. But, when we separated the sieved ore using shaking table, the gold and silver grade increased to 40 ppm and 140 ppm, respectively. Then the recovery rate of gold reach almost 100% but that of silver is no more that 50%.