• Title/Summary/Keyword: galaxy clusters

Search Result 380, Processing Time 0.025 seconds

Are There Any Old Globular Clusters in the Starburst Galaxy M82?

  • Lim, Sung-Soon;Hwang, Na-Rae;Lee, Myung-Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2011
  • M82 is a famous starburst galaxy which is dominated by young stellar populations and ISM. Some previous studies indicated the existence of intermediate-age and old stellar population in this galaxy, but little is known about them. We present a study of old globular clusters in M82 using the Hubble Space Telescope archive data. From the cluster survey of M82 we found 650 star clusters. We divided them into disk and halo star clusters according to their position. The color-color diagrams show that all 19 halo star clusters are old globular clusters. The disk sample may include both reddened young clusters and geniune old globular clusters. We estimated their ages using spectral energy distribution fit method with six filter data covering from ultraviolet (F330W) to infrared (F160W), and found that 30 of them are older than 3 Gyr. These are considered to be disk globular clusters. Twelve of the halo globular clusters are found to be partially resolved into their member stars. The (B-V) color range of the halo globular clusters is consistent with that of the Milky Way globular clusters, but most of M82 globular clusters are bluer than (B-V)=0.7. The existence of these old globular clusters suggests that the starburst galaxy M82 has an old stellar halo that may be as old as the Milky Way halo.

  • PDF

X-RAY STUDIES OF THE INTRACLUSTER MEDIUM IN CLUSTERS OF GALAXIES - CHARACTERIZING GALAXY CLUSTERS AS GIANT LABORATORIES

  • BOHRINGER HANS
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.361-369
    • /
    • 2004
  • Galaxy clusters as the densest and most prominent regions within the large-scale structure can be used as well characterizable laboratories to study astrophysical processes on the largest scales. X-ray observations provide currently the best way to determine the physical properties of galaxy clusters and the environmental parameters that describe them as laboratories. We illustrate this use of galaxy clusters and the precision of our understanding of them as laboratory environments with several examples. Their application to determine the matter composition of the Universe shows good agreement with results from other methods and is therefore a good test of our understanding. We test the reliability of mass measurements and illustrate the use of X-ray diagnostics to study the dynamical state of clusters. We discuss further studies on turbulence in the cluster ICM, the interaction of central AGN with the radiatively cooling plasma in cluster cooling cores and the lessons learned from the ICM enrichment by heavy elements.

Particle Tagging Method to Study the Formation and Evolution of Globular Clusters in Galaxy Clusters

  • Park, So-Myoung;Shin, Jihye;Smith, Rory;Chun, Kyungwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.29.3-29.3
    • /
    • 2021
  • Globular clusters (GCs) form at the very early stage of galaxy formation, and thus can be used as an important clue indicating the environment of the galaxy formation era. Although various GC formation scenarios have been suggested, they have not been examined in the cosmological context. Here we introduce the 'particle tagging method' in order to investigate the formation scenarios of GCs in a galaxy cluster. This method is able to trace the evolution of GCs that form in the dark matter halos which undergo the hierarchical merging events in galaxy cluster environments with an effective computational time. For this we use dark matter merger trees from the cosmological N-body simulation. Finally, we would like to find out the best GC formation scenario which can explain the observational properties of GCs in galaxy clusters.

  • PDF

GALAXY CLUSTERS IN GAMMA-RAYS: AN ASSESSMENT FROM OBSERVATIONS

  • REIMER OLAF
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.307-313
    • /
    • 2004
  • Clusters of galaxies are believed to constitute a population of astrophysical objects potentially able to emit electromagnetic radiation up to gamma-ray energies. Evidence of the existence of non-thermal radiation processes in galaxy clusters is indicated from observations of diffuse radio halos, hard X-ray and EUV excess emission. The presence of cosmic ray acceleration processes and its confinement on cosmological timescales nearly inevitably yields in predicting energetic gamma-ray emission, either directly deduceably from a cluster's multifreqency emission characteristics or indirectly during large-scale cosmological structure formation processes. This theoretical reasoning suggests several scenarios to actually detect galaxy clusters at gamma-ray wavelengths: Either resolved as individual sources of point-like or extended gamma-ray emission, by investigating spatial-statistical correlations with unidentified gamma-ray sources or, if unresolved, through their contribution to the extragalactic diffuse gamma-ray background. In the following I review the situation concerning the proposed relation between galaxy clusters and high-energy gamma-ray observations from an observational point-of-view.

Observational Evidence of Merging and Accretion in the Milky Way Galaxy from the Spatial Distribution of Stars in Globular Clusters

  • Chun, Sang-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.76-76
    • /
    • 2013
  • The current hierarchical model of galaxy formation predicts that galaxy halos contain merger relics in the form of long stellar streams. In order to find stellar substructures in galaxy, we focused our investigation on the stellar spatial density around globular clusters and on the quantitative properties of the evolved sequences in the color-magnitude diagrams (CMDs). First, we investigated the spatial configuration of stars around five metal-poor globular clusters in halo region (M15, M30, M53, NGC 5053, and NGC 5466) and one metal-poor globular cluster in bulge region (NGC 6626). Our findings indicate that all of these globular clusters show strong evidence of extratidal features in the form of extended tidal tails around the clusters. The orientations of the extratidal features show the signatures of tidal tails tracing the clusters' orbits and the effects of dynamical interactions with the galaxy. These features were also confirmed by the radial surface density profiles and azimuthal number density profiles. Our results suggest that these six globular clusters are potentially associated with the satellite galaxies merged into the Milky Way. Second, we derived the morphological parameters of the red giant branch (RGB) from the near-infrared CMDs of 12 metal-poor globular clusters in the Galactic bulge. The photometric RGB shape indices such as colors at fixed magnitudes, magnitudes at fixed colors, and the RGB slope were measured for each cluster. The magnitudes of the RGB bump and tip were also estimated. The derived RGB parameters were used to examine the overall behavior of the RGB morphology as a function of cluster metallicity. The behavior of the RGB shape parameters was also compared with the previous observational calibration relation and theoretical predictions of the Yonsei-Yale isochrones. Our results of studies for stellar spatial distribution around globular clusters and the morphological properties of RGB stars in globular clusters could add further observational evidence of merging scenario of galaxy formation.

  • PDF

Weak-lensing Mass Reconstruction of Galaxy Clusters with Convolutional Neural Network

  • Hong, Sungwook E.;Park, Sangnam;Jee, M. James;Bak, Dongsu;Cha, Sangjun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.49.4-50
    • /
    • 2020
  • We introduce a novel method for reconstructing the projected matter distributions of galaxy clusters with weak-lensing (WL) data based on convolutional neural network (CNN). We control the noise level of the galaxy shear catalog such that it mimics the typical properties of the existing Subaru/Suprime-Cam WL observations of galaxy clusters. We find that our mass reconstruction based on multi-layered CNN with architectures of alternating convolution and trans-convolution filters significantly outperforms the traditional mass reconstruction methods.

  • PDF

Tidal Stripping Substructure on Spatial Distribution of Stars in Several Globular Clusters from UKIRT Observation

  • Sohn, Young-Jong;Chun, Sang-Hyun;Kang, Minhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.78.1-78.1
    • /
    • 2013
  • The hierarchical model of galaxy formation predicts that galaxy halos contain merger relics in the form of long stellar stream. Thus, tidal substructure of stars around globular clusters, such as tidal tails, could be an essential evidence of the merging scenario in the formation of the Galaxy. From April 2010 to December 2012, we obtained $45^{\prime}{\times}45^{\prime}$ wide-field JHKs near-infrared photometric imaging data for about 20 globular clusters in the Milky Way, and examined the stellar density distribution around globular clusters. Here, we introduce the preliminary results of stellar spatial distributions and radial surface density profiles of four globular clusters. In order to minimize the field star contamination and identify the cluster's member candidates stars, we used a statistical filtering algorithm and gave weights on the CMDs of globular clusters. In two-dimensional stellar density maps, we could found tidal stripping structures for some globular clusters. The orientation of tidal substructure seems to associate with the effects of dynamical interactions with the Galaxy and cluster's orbit. Indeed, the radial surface density profile accurately describes this stripping structures as a break in the slope of profile. The observational results could give us further observational evidence of merging scenario of the formation of the Galaxy.

  • PDF

TIDAL TAILS OF GLOBULAR CLUSTERS

  • YIM KI-JEONG;LEE HYUNG MOK
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.75-85
    • /
    • 2002
  • We present N-body simulations of globular clusters including gravitational field of the Galaxy, in order to study effects of tidal field systematically on the shape of outer parts of globular clusters using NBODY6. The Galaxy is assumed to be composed of central bulge and outer halo. We mvestigate the cluster of multi-mass models with a power-law initial mass function (IMF) starting with different initial masses, initial number of particles, different slopes of the IMF and different orbits of the cluster. We have examined the general evolution of the clusters, the shape of outer parts of the clusters, density profiles and the direction of tidal tails. The density profiles appear to become somewhat shallower just outside the tidal boundary consistent with some observed data. The position angle of the tidal tall depends on the location in the Galaxy as well as the direction of the motion of. clusters. We found that the clusters become more elongated at the apogalacticon than at the pengalacticon. The tidal tails may be used to trace the orbital paths of globular clusters.

Search for galaxy clusters in SA22

  • Kim, Jae-Woo;Im, Myungshin;Hyun, Minhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.83.1-83.1
    • /
    • 2012
  • The galaxy cluster is a good laboratory to test the cosmological model as well as the evolution of galaxies in the dense region. However the lack of wide and deep near-IR datasets has prevented to identify galaxy clusters at z>1. Here we merge a wide, deep near-IR datasets of UKIDSS DXS (J and K bands) and IMS (J band) with the CFHT Legacy Survey (CFHTLS) ugriz catalogue to detect galaxy clusters. We identify candidate galaxy clusters at z>0.8, where the near-IR dataset plays an important role to detect galaxies efficiently. The cluster mass is also estimated based on the cluster richness and the semi-analytical cosmological simulation.

  • PDF

Discovery of high redshift galaxy clusters and superclusters and study of star formation-density relation

  • Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook;Edge, Alastair C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.49.2-49.2
    • /
    • 2015
  • Galaxy cluster is the most important laboratoriy to study the effect of environment on galaxies, one of key questions in astronomy. In the local universe, it is well known that red, passive galaxies are concentrated in the cluster core. However, it is still controversial whether the star formation-density relation at the low redshift is retained in the distant universe. Many surveys have tried to find galaxy clusters at various epochs. However the optical dataset has limitations in finding galaxy clusters at z > 1, since the bulk of stellar emission of z > 1 galaxies is redshifted into the near-IR regime. We used the multi-wavelength data from the UKIDSS DXS (J and K bands), the SWIRE (4 IRAC bands), and the PAN-STARRS (g, r, i, z, y bands) and IMS (J band; Im et al. 2015, in preparation) in the European Large Area ISO Survey North1 (ELAIS-N1) field to search for high redshift galaxy clusters and study the properties of member galaxies. Using the multi-wavelength data, we investigated overdensities of galaxies at 0.2 < z < 1.6 based on the photometric redshift information. We found several superclusters where cluster candidates are concentrated within scales of few tens of Mpc at z ~ 0.9. Interestingly, some of the supercluster candidates consist of galaxy clusters which are dominated by blue galaxies. We will present high redshift galaxy cluster and supercluster candidates in ELAIS-N1 field and galaxy properties in different environments including dense clusters and fields.

  • PDF