• Title/Summary/Keyword: galaxy: general

Search Result 84, Processing Time 0.02 seconds

THE LUMINOSITY OF TYPE IA SUPERNOVA AND THE PROPERTIES OF THEIR EARLY-TYPE HOST GALAXIES

  • KANG, YIJUNG;KIM, YOUNG-LO;LEE, YOUNG-WOOK;LIM, DONGWOOK;CHUNG, CHUL;SUNG, EON-CHANG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.487-488
    • /
    • 2015
  • In type Ia supernovae (SNe Ia) cosmology, a well-established correlation exists between the mass of host galaxies and the Hubble residual (HR) of SNe Ia. In order to investigate the origin of this correlation, we used low-resolution spectroscopic data of early-type host galaxies obtained from our YOnsei Nearby Supernovae Evolution Investigation (YONSEI) project. We measured velocity dispersions and Lick/IDS absorption line indices from these fully calibrated spectra. These indices were used to estimate the luminosity-weighted mean age, metallicity and mass of host galaxies. We found a tight correlation between host mass and population age, which is consistent with the "downsizing" trend in early-type galaxies. This suggests that the well-established correlation between HR and host mass is most likely due to the difference in population age. More observations, which are in progress, are required to understand the impact of luminosity evolution on SNe Ia cosmology.

PROGRESS REPORT: INVESTIGATION OF THE MORPHOLOGY OF CLUSTER GALAXIES

  • OH, SEULHEE;YI, SUKYOUNG K.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.529-530
    • /
    • 2015
  • We investigated the galaxy morphology of 6 Abell clusters at z = 0.0784 - 0.145 based on deep images obtained using MegaCam on the CFHT. For hundreds of galaxies in our data, we classified their morphology based on criteria related to secular or merger related evolution. We found that the morphological mixture of galaxies varies considerably from cluster to cluster. This article contains a general description of our deep imaging campaign and preliminary results for galaxy morphologies in cluster environments.

DYNAMICAL MODELS OF SPHERICAL GALAXIES WITH MASSIVE HALO (무거운 헤일로를 가진 구형 은하의 역학 모형)

  • 천문석;고훈성;손영종
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.63-82
    • /
    • 2003
  • Using the Schwarzschild's linear programming technique, we obtained the general solutions of the collisionless Bolzmann equation describing the spherical galaxy in dynamical equilibrium. From this calculation we have confirmed the existence of isotropic spherical galaxies obeying a de Vaucouleurs'law which includes a dark halo. The flattening profile of the velocity dispersion curve seen in the elliptical galaxies can be explained as the increase of mass to light ratio in this dark matter. The space density distribution of this dark matter shows that the core radius of the dark matter is smaller than the effective radius of the galaxy.

Testing Gravitational Weak-lensing Maps with Galaxy Redshift Surveys

  • Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2014
  • A gravitational weak-lensing map provides a weighted "picture" of the projected surface mass density and is to be an important tool for identifying "mass-selected" clusters of galaxies. However, weak-lensing maps have a limitation due to the projection of large-sclae structure along the line-of-sight. Geller et al. (2010) and Kurtz et al. (2012) compared massive clusters identified in a dense redshift survey with significant weak-lensing map convergence peaks. Both assessments of the efficiency of weak-lensing map for cluster identification did not draw a general conclusion, because the sample is so small. Thus, we additionally perform deep imaging observations of fields in a dense galaxy redshift survey that contain galaxy clusters at z~0.2-0.5, using CFHT Megacam. Our study will provide an important opportunity to examine the efficiency and completeness of a weak-lensing selection, and further to improve the method of cluster identification in future weak-lensing surveys.

  • PDF

MONTE-CARLO SIMULATION OF NEUTRON STAR ORBITS IN THE GALAXY

  • TAANI, ALI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.583-584
    • /
    • 2015
  • In this paper, the numerical results concerning different orbits of a 3D axisymmetric non-rotating galactic potential are presented. We use $Paczy{\acute{n}}ski^{\prime}s$ gravitational potential with different birth velocity distributions for the isolated old Neutron Star (NS) population. We note some smooth non-constant segments corresponding to regular orbits as well as the characterization of their chaoticity. This is strongly related to the effect of different kick velocities due to supernovae mass-loss and natal kicks to the newly-formed NS. We further confirm that the dynamical motion of the isolated old NSs in the gravitational field becomes obvious, with some significant diffraction in the symmetry of their orbital characteristics.

Deep polarization observations of a ram pressure stripped galaxy, NGC 4522

  • Choi, Woorak;Chung, Aeree;Kim, Chang-goo;Lee, Bumhyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.65.1-65.1
    • /
    • 2020
  • We present high-resolution, high-sensitivity continuum data of NGC 4522 observed at 3 cm (X-band) and 10 cm (S-band) in full polarization mode using the JVLA. This observation has 2 - 4 times better spatial resolution and 2 - 5 times better sensitivity compared to previous continuum observations. NGC 4522 is a Virgo spiral galaxy undergoing active ram pressure stripping. This galaxy is particularly well known for the CO emission detected outside its stellar disk, some of which coincides with the extraplanar HI gas and Halpha patches. The major goal of our JVLA observation is to leverage our understanding of the influence of the ram pressure on the general ISM field and multi-phase medium. By combining our new deep radio continuum data and previous observations, we will investigate how the B-field properties can be affected by the ram pressure, and what roles the B-field plays in the stripping process of the multi-phased ISM and in the star formation activity when the ram pressure is present.

  • PDF

DYNAMICAL EVOLUTION OF THE M87 GLOBULAR CLUSTER SYSTEM

  • Kim, Sung-Soo;Shin, Ji-Hye;Jin, Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.4
    • /
    • pp.105-113
    • /
    • 2010
  • We study the dynamical evolution of the M87 globular cluster (GC) system using the most advanced and realistic Fokker-Planck (FP) model.By comparing our FP models with both mass function (MF) and radial distribution (RD) of the observed GC system, we find the best-fit initial (at M87's age of 2-3 Gyr) MF and RD for three GC groups: all GCs, blue GCs, and red GCs. We estimate the initial total mass in GCs to be $1.8^{+0.3}_{-0.2}{\times}10^{10}M_{\bigodot}$, which is about 100 times larger than that of the Milky Way GC system. We also find that the fraction of the total mass currently in GCs is 34\%. When blue and red GCs are fitted separately, blue GCs initially have a larger total mass and a shallower radial distribution than red GCs. If one assumes that most of the significant major merger events of M87 have ended by the age of 2-3 Gyr, our finding that blue (metal-poor) GCs initially had a shallower radial distribution supports the major merger scenario for the origin of metallicity bimodality.

KOREA INSTITUTE FOR ADVANCED STUDY VALUE-ADDED GALAXY CATALOG

  • Choi, Yun-Young;Han, Du-Hwan;Kim, Sung-Soo S.
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.6
    • /
    • pp.191-200
    • /
    • 2010
  • We present the Korea Institute for Advanced Study Value-Added Galaxy Catalog (KIAS VAGC), a catalog of galaxies based on the Large Scale Structure (LSS) sample of New York University Value-Added Galaxy Catalog (NYU VAGC) Data Release 7. Our catalog supplements redshifts of 10,497 galaxies with 10 < $r_P\;{\leq}\;17.6$ (1455 with 10 < $r_P\;{\leq}\;14.5$) to the NYU VAGC LSS sample. Redshifts from various existing catalogs such as the Updated Zwicky Catalog, the IRAS Point Source Catalog Redshift Survey, the Third Reference Catalogue of Bright Galaxies, and the Two Degree Field Galaxy Redshift Survey have been put into the NYU VAGC photometric catalog. Our supplementation significantly improves spectroscopic completeness: the area covered by the spectroscopic sample with completeness higher than 95% increases from 2.119 to 1.737 sr. Our catalog also provides morphological types of all galaxies that are determined by the automated morphology classification scheme of Park & Choi (2005), and related parameters, together with fundamental photometry parameters supplied by the NYU VAGC. Our catalog contains matches to objects in the Max Planck for Astronomy (MPA) & Johns Hopkins University (JHU) spectrum measurements (Data Release 7). This new catalog, the KIAS VAGC, is complementary to the NYU VAGC and MPA-JHU catalog.

Progress Report : Research on Detailed Morphology of Cluster Galaxies

  • Oh, Seulhee;Yi, Sukyoung K.;Sheen, Yun-Kyeong;Kyeong, Jaemann;Sung, Eon-Chang;Kim, Minjin;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.46.2-46.2
    • /
    • 2014
  • Galaxy morphology is involved complex effects of both secular and non-secular evolution of galaxies. Although it is a final product of a galaxy evolution, it may give a clue for the process that the galaxy suffer. Galaxy clusters are the sites where the most massive galaxies are found, and the most dramatic merger histories are embedded. Morphology study in nearby universe, e.g. Virgo cluster, is well established, but for clusters at z ~ 0.1 it is only focused on bright galaxies due to observational limits. Our optical deep imaging of 14 Abell clusters at z = 0.014 - 0.16 using IMACS f/2 on a Magellan Badde 6.5-m telescope and MegaCam on a 3.8-m CFHT enable to classify detailed morphology. For the galaxies in our data, we investigated their morphology with several criteria related to secular or merger related evolution. Our research on detailed morphology of thousands of galaxies through deep imaging would give a general census of cluster galaxies and help to estimate the evolution of cluster galaxies.

  • PDF

ON THE IMPORTANCE OF USING APPROPRIATE SPECTRAL MODELS TO DERIVE PHYSICAL PROPERTIES OF GALAXIES

  • PACIFICI, CAMILLA;DA CUNHA, ELISABETE;CHARLOT, STEPHANE;YI, SUKYOUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.535-537
    • /
    • 2015
  • Interpreting ultraviolet-to-infrared (UV-to-IR) observations of galaxies in terms of constraints on physical parameters-such as stellar mass ($M_{\ast}$) and star formation rate (SFR)-requires spectral synthesis modelling. We investigate how increasing the level of sophistication of the standard simplifying assumptions of such models can improve estimates of galaxy physical parameters. To achieve this, we compile a sample of 1048 galaxies at redshifts 0.7 < z < 2.8 with accurate photometry at rest-frame UV to near-IR wavelengths from the 3D-HST Survey. We compare the spectral energy distributions of these galaxies with those from different model spectral libraries to derive estimates of the physical parameters. We find that spectral libraries including sophisticated descriptions of galaxy star formation histories (SFHs) and prescriptions for attenuation by dust and nebular emission provide a much better representation of the observations than 'classical' spectral libraries, in which galaxy SFHs are assumed to be exponentially declining functions of time, associated with a simple prescription for dust attenuation free of nebular emission. As a result, for the galaxies in our sample, $M_{\ast}$ derived using classical spectral libraries tends to be systematically overestimated and SFRs systematically underestimated relative to the values derived adopting a more realistic spectral library. We conclude that the sophisticated approach considered here is required to reliably interpret fundamental diagnostics of galaxy evolution.