• Title/Summary/Keyword: galactan

Search Result 28, Processing Time 0.023 seconds

Structural Analysis of Anti-metastatic Polysaccharides Isolated from Opuntia humifusa (천년초에서 분리한 항전이 다당의 구조 분석)

  • Choi, Jung-Ho;Shin, Kwang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.214-222
    • /
    • 2011
  • To examine the new practical utilization of mucilages in Opuntia humifusa, polysaccharides were isolated from O. humifusa and their anti-metastatic activity and structural analysis were carried out. In experimental lung metastasis of B16BL6 melanoma cells, prophylactically intravenous (i.v.) administration of the crude polysaccharide (CNC-0) from O. humifusa significantly inhibited lung metastasis in a dose-dependant manner. The main polysaccharide, CNC-Ia was purified to homogeneity from CNC-0 by two successive column chromatographies using DEAE-Sepharose FF and Sephadex G-100 and its structure was characterized. Molecular mass of CNC-Ia was estimated to be 700 kDa and it mainly consisted of arabinose, galactose and xylose in addition to two minor sugars such as rhamnose and fucose. Methylation analysis indicated that CNC-Ia comprised at least 18 different glycosyl linkages such as terminal Araf, 5-linked Araf, 4-linked Galp and terminal Xylp in addition to three characteristic linkages such as full branched Araf, 3,4,6-branched Galp and full branched Galp. To analyze the fine structure of CNC-Ia, it was sequentially digested by exo-${\alpha}$-L-arabinofuranosidase and endo-${\beta}$-1,4-D-galactanase. These analyses suggested that CNC-Ia belongs to be a highly branched Type I arabinogalactan which has a ($1{\rightarrow}4$)-${\beta}$-galactan backbone with arabinosyl oligosaccharide side chains.

Reticuloendothelial System Potentiating of Polysaccharide from Panax Species (Panax속 식물의 다당류가 망내계 활성에 미치는 영향)

  • Ohtani Kazuhiro;Hirose Kumi;Hatana Shunso;Mizutani Kenji;Kasai Ryoji;Tanaka Osamu;Masuda Hitoshi;Furukawa Hiromi;Fuwa Tohru
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.147-150
    • /
    • 1988
  • Polysaccharides which show reticuloendothelial system potentiating activity in carbon clearance tests have been examined in water extracts of Panx species. From the dried roots of P. notoginseng, an active polysaccharide called sanchinan-A was isolated. The molecular weight of sanchinan-A was estimated to be 1,500,000D and the structure was determined to be $\beta$-D-(1-3-galactan), possessing branch points at positions 0-6 at which (mainly-$\alpha$-L-arabinofuranosyl and partly $\beta$-D-galactopyranosyl)-(1-6)-$\beta$-D-galacto-pyranosyl-(1-3)-$\beta$-D-galactopyranosyl side chains are attached on average, to two of three galactosyl units. From dried rhizomes of P. japonicus, several active polysaccharides were also isolated, and these structuers were also determined. From the dried roots of P. ginseng, several polysaccharides which showed strong activity were isolated. The structures of these compounds are currently under investigation. The polysaccharide fraction (non-dialyzed fraction) of the water extract of red ginseng (steam-dried roots) did not exhibit activity, while the dialyzed fraction potentiated RES. Activity disappeared, however, during the process of separation due to the presence of a substance in the fraction which stabilizes an active substance.

  • PDF

Characterization of Immuno-stimulating Polysaccharides Isolated from Korean Persimmon Vinegar (감식초에서 분리한 면역활성다당의 특성)

  • Hwang, Yong-Chul;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.220-227
    • /
    • 2008
  • In this study, polysaccharides were isolated from Korean persimmon vinegar to characterize the polysaccharides existing as soluble forms within traditional Korean fermented beverages, and their immuno-stimulating activities were examined. Three successive chromatographies were used to purify the main polysaccharide in the persimmon vinegar, PV-1b-I, to homogeneity from the crude polysaccharide (PV-0). The molecular mass of PV-1b-I was estimated as 110 kDa and it contained significant proportions of mannose (46.8%), galactose (28.5%) and arabinose (19.1%). PV-1b-I strongly reacted with ${\beta}$-glucosyl Yariv reagent, suggesting the presence of an arabino-3,6-galactan moiety. PV-1b-I also induced high levels of macrophage activation and mitogenicity on murine splenocytes in vitro. The intravenous administration of PV-1b-I significantly augmented NK cytotoxicity against YAC-1 tumor cells. PV-1b-I also showed potent anticomplementary activity in a dose-dependent manner. Finally, C3 activation products were identified by crossed immunoelectrophoresis using anti-human C3 and the anti-complementary activity of PV-1b-I under $Ca^{2+}$-free conditions, suggesting that this PV-1b-I causes complementary activations via both alternative and classical pathways. From these results, one can conclude that Korean persimmon vinegar contains select polysaccharides in addition to healthy components, and these polysaccharides appear to provide immuno-stimulating activities beneficial to human health.

Immunomodulatory and anti-metastatic activities of polysaccharide isolated from red cabbage (적양배추에서 분리한 다당의 면역 및 항전이 활성)

  • Lee, Sue Jung;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.263-271
    • /
    • 2019
  • In this study, we examined the immunostimulating characteristics of a hot water extract (RCW) and crude polysaccharides (RCP) of red cabbage. RCW and RCP did not show any cytotoxicity in B16BL6 cells and macrophages. Although the sugar compositions of RCW and RCP were similar, the uronic acid content of RCP was higher than that of RCW RCP significantly increased the production of various cytokines and NO, whereas RCW did not affect the production of cytokines and NO. In an ex vivo assay of natural killer (NK) cell activity, intravenous (i.v.) administration of RCP significantly augmented NK cytotoxicity against Yac-1 tumor cells at 3 days after RCP treatment. In an experimental lung metastasis model using B16BL6 melanoma cells, i.v. administration of RCP at a dose of $1,000{\mu}g$ per mouse significantly inhibited 47.3% of lung metastasis. These results suggest that crude polysaccharide isolated from red cabbage is a promising food ingredient for the prevention of tumor metastasis.

Molecular Cloning and Characterization of a Novel Exo-β-1,3-Galactanase from Penicillium oxalicum sp. 68

  • Zhou, Tong;Hu, Yanbo;Yan, Xuecui;Cui, Jing;Wang, Yibing;Luo, Feng;Yuan, Ye;Yu, Zhenxiang;Zhou, Yifa
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1064-1071
    • /
    • 2022
  • Arabinogalactans have diverse biological properties and can be used as pharmaceutical agents. Most arabinogalactans are composed of β-(1→3)-galactan, so it is particularly important to identify β-1,3-galactanases that can selectively degrade them. In this study, a novel exo-β-1,3-galactanase, named PoGal3, was screened from Penicillium oxalicum sp. 68, and hetero-expressed in P. pastoris GS115 as a soluble protein. PoGal3 belongs to glycoside hydrolase family 43 (GH43) and has a 1,356-bp gene length that encodes 451 amino acids residues. To study the enzymatic properties and substrate selectivity of PoGal3, β-1,3-galactan (AG-P-I) from larch wood arabinogalactan (LWAG) was prepared and characterized by HPLC and NMR. Using AG-P-I as substrate, purified PoGal3 exhibited an optimal pH of 5.0 and temperature of 40℃. We also discovered that Zn2+ had the strongest promoting effect on enzyme activity, increasing it by 28.6%. Substrate specificity suggests that PoGal3 functions as an exo-β-1,3-galactanase, with its greatest catalytic activity observed on AG-P-I. Hydrolytic products of AG-P-I are mainly composed of galactose and β-1,6-galactobiose. In addition, PoGal3 can catalyze hydrolysis of LWAG to produce galacto-oligomers. PoGal3 is the first enzyme identified as an exo-β-1,3-galactanase that can be used in building glycan blocks of crucial glycoconjugates to assess their biological functions.

Industrial Applications of Saccharification Technology for Red Seaweed Polysaccharide (산업적 응용을 위한 홍조류 당화 기술)

  • Hong, Chae-Hwan;Kim, Se Won;Kim, Yong-Woon;Park, Hyun-Dal;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.307-315
    • /
    • 2014
  • Recently seaweed polysaccharides have been extensively studied for alternative energy application. Because their producing cost is high and efficiency low, their industrial applications have been limited. The main component of cell wall of red algae represented by Gelidiales and Gracilariales is agar. Red-algae agar or galactan, consisting of D-galactose and 3, 6-anhydro-L-galactose, is suitable for bio-product application if hydrolyzed to monomer unit. For the hydrolysis of algae, chemical or enzymatic treatment can be used. A chemical process using a strong acid is simple and efficient, but it generates together with target sugar and toxic compounds. In an enzymatic hydrolysis process, target sugar without toxic compounds generation. The objective of this review is to summary the recent data of saccharification by chemical and enzymatic means from red seaweed for especially focused on automobile industry.

Changes in Cell Wall Components and Cell Wall-degrading enzymes during Softening of Fruits (과실의 연화중에 세포벽 성분과 세포벽분해효소의 변화)

  • 신승렬;김광수
    • Food Science and Preservation
    • /
    • v.3 no.1
    • /
    • pp.93-104
    • /
    • 1996
  • The cell wall components of fruit include cellulose. hemicellulose, pectin, glycoprotein etc., and the cell wall composition differs according to the kind of fruit. Fruit softening occurs as a result of a change in the cell wall polysaccharides : the middle lamella which links primary cell walls is composed of pectin. and primary cell walls are decomposed by a solution of middle lamella caused due to a result of pectin degradation by pectin degrading enzymes during ripening and softening, During fruit ripening and softening, contents of arabinose and galactose among non-cellulosic neutral sugars are notably decreased, and this occurs as a result of the degradation of pectin during fruit repening and softening since they are side-chained with pectin in the form of arabinogalactan and galactan Enzymes involved in the degradation of the cell wall include polygalacturonase, cellulose, pectinmethylesterase, glycosidase, etc., and various studies have been done on the change in enzyme activities during the ripening and softning of fruit. Among cell wall-degrading enzymes, polygalacturonase has the greatest effect on fruit softening, and its activity Increases during the maturating and softening of fruit. This softening leads to the textural change of fruit as a result of the degradation of cell wall polysaccharides by a cell wall degrading enzyme which exists in fruit.

  • PDF

Rhamnogalacturonan I-rich fractions from cherry tomatoes stimulate phagocytosis in RAW 264.7 macrophages

  • Hwang, Dahyun;Lim, Young-Hee;Shin, Kwang-Soon;Koh, Jong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.278-285
    • /
    • 2019
  • Tomato (Lycopersicon esculentum) is widely known for its beneficial effects on human health. To investigate the beneficial effects of polysaccharides from cherry tomato, cherry tomato polysaccharides (CTP) were prepared, the component sugars were analyzed, and the immunomodulatory activities in RAW 264.7 macrophages were assessed. CTP mainly contained arabinose (Ara) and galactose (Gal), suggesting that CTP might be enriched with an arabinogalactan (AG) moiety. The Ara and Gal present in CTP are likely components of AG-II (35.4%), namely $arabino-{\beta}-(3,6)-galactan$. To investigate the immunomodulatory activity of CTP, cytokine levels and iNOS2, COX-2, and $NF-{\kappa}B$ protein levels were analyzed, and $NF-{\kappa}B$ nuclear translocation and phagocytosis were observed by immunofluorescence. CTP significantly increased the levels of $TNF-{\alpha}$, MCP-1, and IL-6. CTP also increased iNOS2 and COX-2 expression as well as $NF-{\kappa}B$ nuclear translocation in RAW 264.7 cells. CTP significantly stimulated phagocytosis activity. These results showed that CTP stimulates macrophage activity, which can boost the innate immune response. CTP with high AG-II content could be used as a prebiotic to strengthen immunity.

Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol

  • Lee, Heon-Hak;Jeon, Min-Ki;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.641-649
    • /
    • 2016
  • This study was conducted to evaluate the yield of bio-ethanol produced by separate hydrolysis and fermentation (SHF) with the pretreated rapeseed straw (RS) using crude enzyme of Cellulomonas flavigena and Saccharomyces cereviase. Crude enzyme of C. flavigena showed enzymatic activity of 14.02 U/mL for CMC 133.40 U/mL, for xylan 15.21 U/mL, for locust gum and 15.73 U/mL for rapeseed straw at pH 5.0 and $40^{\circ}C$, respectively. The hemicellulose contents of RS was estimated to compromise 36.62% of glucan, 43.20% of XMG (xylan + mannan + galactan), and 2.73% of arabinan by HPLC analysis. The recovering ratio of rapeseed straw were investigated to remain only glucan 75.2% after 1% $H_2SO_4$ pretreatment, glucan 45.44% and XMG 32.13% after NaOH, glucan 44.75% and XMG 5.47% after $NH_4OH$, and glucan 41.29% and XMG 41.04% after hot water. Glucan in the pretreatments of RS was saccharified to glucose of 45.42 - 64.81% by crude enzyme of C. flavigena while XMG was made into to xylose + mannose + galactose of 58.46 - 78.59%. Moreover, about 52.88 - 58.06 % of bio-ethanol were obtained from four kinds of saccharified solutions by SHF using S. cerevisiae. Furthermore, NaOH pretreatment was determined to show the highest mass balance, in which 21.22 g of bio-ethanol was produced from 100 g of RS. Conclusively, the utilization of NaOH pretreatment and crude enzyme of Cellulomonas flavigena was estimated to be the best efficient saccharification process for the production of bio-ethanol with rapeseed straw by SHF.

Molecular Characterization of the α-Galactosidase SCO0284 from Streptomyces coelicolor A3(2), a Family 27 Glycosyl Hydrolase

  • Temuujin, Uyangaa;Park, Jae Seon;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1650-1656
    • /
    • 2016
  • The SCO0284 gene of Streptomyces coelicolor A3(2) is predicted to encode an α-galactosidase (680 amino acids) belonging to glycoside hydrolase family 27. In this study, the SCO0284 coding region was cloned and overexpressed in Streptomyces lividans TK24. The mature form of SCO0284 (641 amino acids, 68 kDa) was purified from culture broth by gel filtration chromatography, with 83.3-fold purification and a yield of 11.2%. Purified SCO0284 showed strong activity against p-nitrophenyl-α-D-galactopyranoside, melibiose, raffinose, and stachyose, and no activity toward lactose, agar (galactan), and neoagarooligosaccharides, indicating that it is an α-galactosidase. Optimal enzyme activity was observed at 40℃ and pH 7.0. The addition of metal ions or EDTA did not affect the enzyme activity, indicating that no metal cofactor is required. The kinetic parameters Vmax and Km for p-nitrophenyl-α-D-galactopyranoside were 1.6 mg/ml (0.0053 M) and 71.4 U/mg, respectively. Thin-layer chromatography and mass spectrometry analysis of the hydrolyzed products of melibiose, raffinose, and stachyose showed perfect matches with the masses of the sodium adducts of the hydrolyzed products, galactose (M+Na, 203), melibiose (M+Na, 365), and raffinose (M+Na, 527), respectively, indicating that it specifically cleaves the α-1,6-glycosidic bond of the substrate, releasing the terminal D-galactose.