Browse > Article
http://dx.doi.org/10.7841/ksbbj.2014.29.5.307

Industrial Applications of Saccharification Technology for Red Seaweed Polysaccharide  

Hong, Chae-Hwan (Research & Development Division, Hyundai Motor Group)
Kim, Se Won (Department of Chemical, Biochemical and Polymer Engineering, Chosun University)
Kim, Yong-Woon (Department of Chemical, Biochemical and Polymer Engineering, Chosun University)
Park, Hyun-Dal (Research & Development Division, Hyundai Motor Group)
Shin, Hyun-Jae (Department of Chemical, Biochemical and Polymer Engineering, Chosun University)
Publication Information
KSBB Journal / v.29, no.5, 2014 , pp. 307-315 More about this Journal
Abstract
Recently seaweed polysaccharides have been extensively studied for alternative energy application. Because their producing cost is high and efficiency low, their industrial applications have been limited. The main component of cell wall of red algae represented by Gelidiales and Gracilariales is agar. Red-algae agar or galactan, consisting of D-galactose and 3, 6-anhydro-L-galactose, is suitable for bio-product application if hydrolyzed to monomer unit. For the hydrolysis of algae, chemical or enzymatic treatment can be used. A chemical process using a strong acid is simple and efficient, but it generates together with target sugar and toxic compounds. In an enzymatic hydrolysis process, target sugar without toxic compounds generation. The objective of this review is to summary the recent data of saccharification by chemical and enzymatic means from red seaweed for especially focused on automobile industry.
Keywords
Red seaweed; Saccharification; Automobile industry; Acid hydrolysis; Enzymatic hydrolysis;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Chandini, S. K., P. Ganesan, P. V. Suresh, and N. Bhaskar (2008) Seaweeds as source of nutritionally beneficial compounds-A review. J. Food Sci. Technol. 45: 1-13.
2 Lee, H. D. (1999) Policy Directions for the Development of Marine Biotechnology.
3 Jeong, G. T. and D. H. Park (2010) Production of sugars and levulinic acid from marine biomass Gelidium amansii. Appl. Biochem. Biotechnol. 161: 41-52.   DOI   ScienceOn
4 Meinita, M. D. N., Y. K. Hong, and G. T. Jeong (2012) Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst. Eng. 35: 123-128.   DOI
5 Kumari, P., M. Kumar, V. Gupta, C. R. K. Reddy, and B. Jha (2010) Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem. 120: 749-757.   DOI
6 Dolan, T. C. S. and D. A. Rees (1965) The carrageenans. II. The positions of the glycosidic linkages and sulphate esters in $\lambda$-carrageenan. J. Chem. Soc. 3534.   DOI
7 Duckworth, M. and W. Yaphe (1971) Structure of ahar. I. Fractionation of a complex mixture of polysaccharides. Carboohydr. Res. 16: 189-197.   DOI   ScienceOn
8 Kim, J. H., Y. H. Kim, S. K. Kim, B. W. Kim, and S. W. Nam (2011) Properties and Industrial Applications of Seaweed Polysaccharides- degrading Enzymes from the Marine Microorganisms. Korean J. Microbiol. Biotechnol. 39: 189-199.   과학기술학회마을
9 Duckworth, M. and W. Yaphe (1971) Structure of ahar. I. Fractionation of a complex mixture of polysaccharides. Carboohydr. Res. 16: 189-197.   DOI   ScienceOn
10 Beer, L., E. S. Boyd, J. Peters, and M. Posewitz (2009) Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotech. 20: 264-271.   DOI   ScienceOn
11 Buck, B. C. and C. M. Buchholz (2004) The offshore ring: A new system design for the open ocean aquaculture of macroalgae. J. Appl. Phycol. 16: 355-369.   DOI
12 Kim, D. G., J. B. Park and T. K. Lee (2013) Analysis of Biochemical Compositions and Nutritive Values of Six Species of Seaweeds. J. Life Sci. 23: 1004-1009.   과학기술학회마을   DOI
13 Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.   DOI   ScienceOn
14 Park, H. Y., H. D. Yoon and E. G. Oh (2001) Effect of Meristotheca Papulosa on Lipid Concentration of Serum and Liver in Rats Fed High Fat Diet. J. Korean Soc. Food Sci. Nutr. 30: 107-111   과학기술학회마을
15 Seo, H. Y.and B. M. Jung (2007) Comparative study of food components and sensory properties of common Porphyra yezoensis and functional Porphyra yezoensis. J. Korean Soc. Food Sci. Nutr. 36: 13141-1319.   과학기술학회마을   DOI
16 Kim, S. S. and Y. H. Park (1978) Seasonal variation in carrageenan content and its chemical composition of Chondrus pinnulatus. Bull. Korean Fish. Soc. 11: 55-64.
17 Saha, B. C. and Cotta, M. A. (2007) Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme Microb. Tech. 41: 528-532.   DOI   ScienceOn
18 John, R. P., G. S. Anisha, K. M. Nampoothiri, and A. Pandey (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102: 186-193.   DOI   ScienceOn
19 Park, J. H., J. Y. Hong, H. C. Jang, S. G. Oh, S. H. Kim, J. Y. Yoon, and Y. J. Kim (2012) Use of Gelidim amansii as a promising resource for bioethanol: a practical approach for continuous diluteacid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88.   DOI   ScienceOn
20 Jang, S. S., S. Yoshihito, U. Motoharu, and W. Minato (2012) Production of mono sugar from acid hydrolysis of seaweed. Afr. J. Biotechnol. 11: 1953-1963.
21 Wang, X., X. Liu, and G. Wang (2011) Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. J. Integr. Plant. Biol. 53: 246-252.   DOI   ScienceOn
22 Wu, C. W., Y. C. Chen, W. C. Chen, and C. H. Wu (2010) Bioethanol from acid-hydrolyzed Gacilaria. J. Taiwan Fish. Res. 18: 65-75. (in Chinese)
23 Meinita, M. D. N., J. Y. Kang, G. T. Jeong, H. M. Koo, S. M. Park, and Hong, Y. K. (2012) Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J. Appl. Phycol. 24: 857-862.   DOI
24 Maria, D. N. M., M. Bintang, W. Tjahjo, G. T. Jeong, N. A. K. Mohammed, and Y. K. Hong (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J. Appl. Phycol. 25: 1957-1961.   DOI   ScienceOn
25 Kumar, S., R., G. Kumar, D. Sahoo, and R. C. Kuhad (2013) Bioethanol production from Gracilaria verrucosa, ared alga, in a biorefinery approach. Bioresour. Technol. 135: 150-156.   DOI   ScienceOn
26 Khambhaty, Y., K. Mody, M. R. Gandhi, S. Thampy, P. Maiti, H. Brahmbhatt, K. Eswaran, and E. K. Ghosh (2012) Kappaphycus alvarezii as a source of bioethanol. Bioresour. Technol. 103: 180-185.   DOI   ScienceOn
27 Meinita, M. D. N., Y. K. Hong, and G. T. Jeong (2012) Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioproc. Biosyst. Eng. 35: 123-128   DOI
28 Lee, S. M., B. J. Yu, Y. M. Kim, S. J. Choi, J. M. Ha, and J. H. Lee (2009) Production of Bio-ethanol from Agar using Saccharomyces cerevisiae. J. Korean Ind. Eng. Chem. 20: 290-295.   과학기술학회마을
29 Jang, H. J., D. G. Lee, S. W. Lee, M. J. Jeon, W. J. Chun, K. K. Kwon, H. S. Lee, and S. H. Lee (2011) Isolation of a marine-derived Flammeovirga Sp. Mbrc-1 strain and characterization of its agagase. KSBB J. 26: 552-556.   DOI
30 Kim, H. S. and T. J. Bae. (2002) Studies on the Hydrolysis of Seaweed using Microorganisms and Its Application II. Screening of Microfloras Involved in Hydrolysis of Seaweed Tenella, Seaweed Fusiforme and Green Laver. Korean J. Food Nutr. 15: 257-266.   과학기술학회마을
31 Yanagisawa, M., K. Nakamura, O. Ariga, and K. Nakasaki (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 46: 2111-2116.   DOI   ScienceOn
32 Denis, C., H. L. Jeune, P. Gaudin, and J. Fleurence (2009) An evaluation of methods for quantifying the enzymatic degradation of red seaweed Grateloupia turuturu. J. Appl. Phycol. 21: 153-159.   DOI
33 Wu, F. C., J. Y. Wu, Y. J. Liao, M. Y. Wang, and I. L. Shih (2014) Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresour. Technol. 156: 123-131.   DOI
34 Chi, W. J., Y. K. Chang, and S. K. Hong (2012) Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930.   DOI   ScienceOn
35 Michel, G., P. Nyval-Collen, T. Barbeyron, M. Czjzek, and W. Helbert (2006) Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl. Microbiol. Biotechnol. 71: 23-33.   DOI   ScienceOn
36 Ha, S. C., S. Lee, J. Lee, H. T. Kim, H. J. Ko, K. H. Kim, and I. G. Choi (2011) Crystal structure of a key enzyme in the agarolytic pathway, $\alpha$-neoagarobiose hydrolase from Saccharophagus degradans 2-40. Biochem. Biophys. Res. Commun. 412: 238-244.   DOI   ScienceOn
37 Razif Harun, R. and M. K. Danquah (2011) Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem. Eng. J. 168: 1079-1084.   DOI
38 Seo, Y. B., Y. Lu, W. J. Chi, H. R. Park, K. J. Jeong, S. K. Hong, and Y. K. Chang (2014) Heterologous expression of a newly screened $\beta$-agarase from Alteromonas sp. GNUM1 in Escherichia coli and its application foragarose degradation. Process Biochem. 49: 430-436.   DOI
39 Alvira, P., E. Tomas-Pejo, M. Ballesteros, and M. J. Negro (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101: 4851-4861.   DOI   ScienceOn
40 Yun, E. J., M. H. Shin, J. J. Yoon, Y. J. Kim, I. G. Choi, and K. H. Kim (2011) Production of 3,6-anhydro-l-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2-40. Process Biochem. 46: 88-93.   DOI   ScienceOn
41 Kim, D. H., S. B. Lee, and G. T. Jeong (2014) Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresour. Technol. 161: 348-353.   DOI
42 Yanagisawa, M., K. Nakamura, O. Ariga, and K. Nakasaki (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 46: 2111-2116.   DOI   ScienceOn
43 Kim, H. T., E. J. Yun, D. Wang, J. H. Chung, I. G.Choi, and K. H. Kim (2013) High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass. Bioresour. Technol. 136: 582-587.   DOI   ScienceOn
44 Do, J. R. and Y. J. Nam (1997) Studies on Chemical Composition of Red Algae. J. Korean Fish. Soc. 30: 428-431.   과학기술학회마을