• Title/Summary/Keyword: g-IFP ring

Search Result 2, Processing Time 0.015 seconds

A GENERALIZATION OF INSERTION-OF-FACTORS-PROPERTY

  • Hwang, Seo-Un;Jeon, Young-Cheol;Park, Kwang-Sug
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.87-94
    • /
    • 2007
  • We in this note introduce the concept of g-IFP rings which is a generalization of IFP rings. We show that from any IFP ring there can be constructed a right g-IFP ring but not IFP. We also study the basic properties of right g-IFP rings, constructing suitable examples to the situations raised naturally in the process.

INSERTION-OF-IDEAL-FACTORS-PROPERTY

  • Baek, Sang Ha;Han, Jung Min;Kim, Eun Ji;Kim, Ju Hee;Kim, Jung Soo;Kim, Min Jae;Kim, Pyeong-Geun;Yi, Changyoon;Lee, Dong Geun;Lee, Seung Yeop;Seo, Dae Jae;Lee, Yang;Ryu, Sung Ju
    • East Asian mathematical journal
    • /
    • v.30 no.5
    • /
    • pp.617-623
    • /
    • 2014
  • Due to Bell, a ring R is usually said to be IFP if ab = 0 implies aRb = 0 for $a,b{\in}R$. It is shown that if f(x)g(x) = 0 for $f(x)=a_0+a_1x$ and $g(x)=b_0+{\cdots}+b_nx^n$ in R[x], then $(f(x)R[x])^{2n+2}g(x)=0$. Motivated by this results, we study the structure of the IFP when proper ideals are taken in place of R, introducing the concept of insertion-of-ideal-factors-property (simply, IIFP) as a generalization of the IFP. A ring R will be called an IIFP ring if ab = 0 (for $a,b{\in}R$) implies aIb = 0 for some proper nonzero ideal I of R, where R is assumed to be non-simple. We in this note study the basic structure of IIFP rings.