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A GENERALIZATION OF
INSERTION-OF-FACTORS-PROPERTY

SeEo UN HWANG, YOUNG CHEOL JEON, AND KWANG SUG PARK

ABSTRACT. We in this note introduce the concept of g-IFP rings which
is a generalization of IFP rings. We show that from any IFP ring there
can be constructed a right g-IFP ring but not IFP. We also study the
basic properties of right g-IFP rings, constructing suitable examples to
the situations raised naturally in the process.

1. Introduction

Throughout this paper all rings are associative with identity unless oth-
erwise stated. Given a ring R we use J(R), N,(R), and N(R) to represent
the Jacobson radical, the prime radical (i.e., lower nilradical), and the set of
all nilpotent elements in R, respectively; and rr(—) (Ig(—)) is used for the
right (left) annihilator over R, i.e., Tgr(S) = {a € R | sa = O for all s € S}
(lr(S) ={b€ R|bs =0foralls € S}), where S C R or S is a subset
of a right (left) R-module. If S = {a} then we write rg(a) (Ir(a)) in place
of rr({a}) (Ir({a})). a € R is said to be right (left) regular if rgr(a) = 0
(Ir(a) =0). a € R is called a left (right) zero-divisor if rr(a) # 0 (Ir(a) # 0).
A zero-divisor means an element that is neither right nor left regular.

In a commutative ring the set of nilpotent elements forms an ideal that
coincides with the prime radical with the help of {7, Proposition 3.2.1]. This
property is also possessed by certain noncommutative rings, which are called 2-
primal. Shin [11, Proposition 1.11] proved that given a ring R, N,(R) = N(R)
if and only if every minimal prime ideal P of R is completely prime (i.e., R/P
is a domain): Birkenmeier et al. [2] called such rings 2-primal; while Hirano
[5] used the term N-ring for the concept.

A well-known property between “commutative” and “2-primal” is the insert-
ion-of-factors-property (or simply IFP) due to Bell [1]; A right (or left) ideal I
of a ring R is said to have the IFP if ab € I implies aRb C I for a,b € R. A
ring R is called IFP if the zero ideal of R has the IFP. Shin [11] used the term
ST for the IFP; while Habeb [4] used the term zero insertive (or simply zi) for
it, in the study of QF-3 rings. IFP rings are also known as semicommutative in
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Narbonne’s paper [10]. Shin proved that IFP rings are 2-primal [11, Theorem
1.5]. A ring is called reduced if it has no nonzero nilpotent elements. It is trivial
to check that reduced rings are IFP, whence the IFP condition is also between
“reduced” and “2-primal”. It is trivial that subrings of IFP rings are also IFP,
so we use this fact freely in this note.

We in this note introduce another generalization of the IFP condition that
is different from the 2-primal condition. We in this note call a ring R right
generalized IFP (or simply, right g-IFP) provided that there is 0 # b’ € R with
aRb = 0 whenever ab = 0 for a,b € R with b # 0. The left g-IFP ring can be
defined symmetrically. A ring is called ¢g-IFP if it is both left and right g-IFP.

2. Basic structure and examples of right g-IFP rings

In this section we observe the ring-theoretic properties of g-IFP rings, and
relationship between g-IFP rings and concerned concepts. Denote the set of
all left (right) zero-divisors in a ring R by zd;(R) (zd,(R)). We start with the
following lemma.

Lemma 2.1. For a ring R the following conditions are equivalent:
(1) R is right g-IFP;
(2) rr(a) contains a nonzero ideal of R for each a € zd;(R);
(3) rr(aR) # 0 for each a € zd;(R).

Proof. (1)=>(2): a € zd;(R) implies rg(a) # 0, so rg(a) contains a nonzero left
ideal of R, say Rb, if R is right g-IFP. Thus 0 = aRb = aRbR and RbR C rg(a).
(2)=>(3): If rr(a) contains a nonzero ideal I of R then 0 = al = aRI and
I - TR((ZR).
(3)=(1): Let rr(a) # 0 fora € R. Then we get rr(aR) # 0 by the condition,
so R is right g-IFP. a

IFP rings are clearly g-IFP but the converse need not hold by the following,.
The example below also shows that the g-IFP condition is not left-right sym-
metric. Given a ring R we use R[z] (R[[z]]) to denote the polynomial (power
series) ring with an indeterminate = over R.

Example 2.2. Let D be a division ring and let T = D[z]/(x?), where (z?) is
the ideal of D[z] generated by z%. Write § = z + (z2). Then T = D @ D§ with
62 = 0 and each element of the form a + bé is invertible when a is nonzero.

Now consider the ring R = (T/ Dé T/Ds

0 T ) Notice that all nonzero proper

ideals of R are

_ (0 T/D§\ , (0 T/DS§\ , (0 T/Ds
Il_(o D6>’12_(0 T)’I3—(0 0 )

I = (8 Doé) I (T/DcS T/Dé) and I — (T/D(S T/Dé) .

0 0 0 Dé
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It is easily checked that each I; is the set of zero divisors for all 1 < ¢ < 6. Note

that every left zero-divisor of R is contained in I for some k € {1,2,...,6},
and that rg(I;) # 0 for all j. Thus R is right g-IFP by Lemma 2.1.
Next we show that R is not left g-IFP. Note (1) 8 8 (1} = 0 and

O R R R s

a b 00_0
0 c+dé/)\O 1) ™

we get b = 0 and ¢ + d§ = 0; hence <a 0) <0 1) = 0 forces a = 0. Thus

0 0/\0 O
Ir( (8 T/II,D(S)) =0 and R is not left g-IFP by Lemma 2.1.

A ring is called abelian if every idempotent is central. It is trivial to check
that IFP rings are abelian, but right or left g-IFP rings need not be abelian by
Example 2.2.

A ring R is called directly finite if zy = 1 implies yz = 1 for z,y € R. It
is trivial to check that abelian rings are directly finite, and 2-primal rings are
also directly finite by [2, Proposition 2.10]. A ring R is called von Neumann
regular if for each a € R there exists z € R such that ¢ = aza. Abelian von
Neumann regular rings are reduced (hence g-IFP) by [3, Theorem 3.2].

Lemma 2.3. (1) Right or left g-IFP rings are directly finite.
(2) Direct sums (possibly without identity) and direct products of right g-IFP
rings are also right g-IFP.

Proof. (1) Let R be a right g-IFP ring. Assume that zy = 1 but yx # 1 for
some z,y € R. Then yz is a non-identity idempotent and yz(1 — yz) = 0 with
1—yx # 0. Since R is right g-IFP, we have yzRb = 0 for some nonzero b € R;
but xRb = zyzRb = 0 implies 0 # b = zyb € zRb = 0, a contradiction. Thus
R is directly finite. The proof of left case is similar.

(2) Suppose that R; (i € I) are right g-IFP rings, and let R = [];.; R
be the direct product of R;’s. Set ab = 0 for a = (a;),b = (b;) € R. Then
ab; = 0 for all 4 € I. Since each R; is right g-IFP, we get a;R;b, = 0 for
some 0 # b, € R;. Let b/ = (b)) € R, then we have aRbV = (a;R;b) = 0 for
some 0 # b’ € R, showing that R is right g-IFP. The case of direct sums is
similar. il

Remark. As a byproduct of Lemma 2.3(1) we get that von Neumann regular
rings need not be one-sided g-IFP. Let F be a field and R be the column finite
infinite matrix ring over F'. Note that R is von Neumann regular. Let a € R be
the matrix with (4,7 + 1)-entry 1 and zero elsewhere, and b € R be the matrix
with (¢ 4+ 1,4)-entry 1 and zero elsewhere, where 1 = 1,2,.... Then ab =1 but
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ba # 1; hence R is not directly finite. Thus R is neither right nor left g-IFP by
Lemma 2.3(1).

Note that IFP rings are both g-IFP and 2-primal, however one of the classes
of g-IFP rings and 2-primal rings need not contain the other as can be seen by
the following.

Example 2.4. (1) There is a g-IFP ring that is not 2-primal. Let K be a
field and D,, = K{z,} with relation z7*2 = 0, where n is any nonnegative
integer and K{z,} is the free algebra generated by z,, over K. Note D, =
K{z]/(z™*?) where (z"2) is the ideal of K[z] generated by z"+2. We use

the ring in [6, Example 1.6]. Define R, = DD; D{f") Notice that

_ (Dpx,, Dypz, R, (K 0}, i .
J(R,) = (ann ann> and j(ﬁn_) o (0 K)’ hence (f3 f4> € R, is

invertible when the constants of f; and f4 are both nonzero.

Now we will show that R, is g-IFP. Let 0 # (;1 ;i) € R, with f; €
3
D,x, for all i, and say that the smallest degree of nonzero f;’s is k for some
. fi fo 1‘2+2_k 0 .
< =
k with1 <k < n+2 Then (fs £ R, 0 g2k 0 with

n+2—-k
(””" 0 o +02_k) # 0. Let 0 # (;1 §2> € R, with f; ¢ Dpz, and f; €
n 3 4
0 0
0 ZZ‘H

Dy, for i € {2,3,4}. Then <f1 f2> R, (
f3 fa

in <f1 f2) R, is of the form (j; Z) with h,k € Dpz,. Next let 0 #

) = (0 because each matrix

f3 fa

(;1 ;2) S Rn with f4 ¢ DnCL‘n and f,‘ (S Dnmn for i € {1a2a3}' Then we
3 4

n+1
have (2 ﬁ) R, (x"O g) = 0 because each matrix in (ﬁ thz) R, is of

the form (g Z with f,9 € Dpz,.
Thus R, is right g-IFP. We can also show that R, is left g-IFP by a similar
method.
Next let R = []>-, Rn. Then R is g-IFP by Lemma 2.3(2) since every R,

is g-IFP. Consider two sequences (a,), (b,) € R such that a, = (0 z") and

0 0
b, = (xO 8 for all n. Then (ay), (b,) € N(R) since (a,)? = 0 = (bn)%
but (a,) ¢ N.(R) or (b,) ¢ N.(R) since each component of (a,) + (bn) is
0 =z,

s 0 and (an) + (bs) is not nilpotent. Thus R is not 2-primal.
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(2) There is a 2-primal ring that is neither right nor left g-IFP. Consider

Lo Zo

the 2 by 2 upper triangular ring R = ( over the field Z, of integers

0 Z
modulo 2. Consider two proper ideals I = R (1) 8 R = Z02 ZO2 and J =

00 0 Z 10 00
R (0 1> R= (O Zi) of R, where (0 0) € zd;(R) and <0 1) € zd.(R).

Then every element of I and J is a zero-divisor. However there cannot exist
nonzero elements z,y € R such that Iz = 0 and yJ = 0. Thus R is neither
right nor left g-IFP by Lemma 2.1. But R is 2-primal by [2, Proposition 2.5].

Remark. (1) Subrings of right g-IFP rings need not be right g-IFP. Consider
. . T/D§ T/D5\ . .
the right g-1FP ring R = with T'= D & D4§ in Example 2.2.

0 T
Ly Zp
0 Zs

Set D = Zs, the field of integers modulo 2. Then (
Zo Z3\ . .
But 0 7, not right g-IFP by Example 2.4(2).

) is a subring of R.

(2) Direct products of 2-primal rings need not be 2-primal by Marks [9] and
[8, Example 1.7]. We here can obtain this result as a byproduct of Example
2.4(1). In fact J(R,) = P(R,) since J(R,,) is nilpotent, so R,, is 2-primal. But
[I;2o Rn is not 2-primal by Example 2.4(1).

Denote the n by n matrix ring over a ring R by Mat,(R) for a positive
integer n. Let R be a simple ring and S = Mata(R). Take a = (8 (1] €8S
Then a is nilpotent, but SaS = S and rs(SaS) = 0, {g(SaS) = 0. Thus S
is neither right nor left g-IFP by Lemma 2.1. By a similar manner, Mat,(R)
cannot be neither right nor left g-IFP for all n > 2.

In the following we find a kind of subring of n by n matrix ring that can be

right or left g-IFP. Given a ring R we counsider a ring extension

a a2 a3 - Qin
0 a a3 - a2

R, = 0 0 @ - an||ga;eRY), where n(> 2) is a positive
0 O 0 - «a

integer. About R,, we have the following useful results:
(1) R, is IFP for n < 3 by [6, Proposition 1.2] when R is a reduced ring;
(ii) R, need not be IFP for n > 2 by [6, Example 1.3] when R is an IFP
ring;
(ili) Ry, cannot be IFP for n > 4 by [6, Example 1.3] over any ring R.
With the help of these results and the following proposition, we can say that
from any IFP ring there can be constructed a right g-IFP ring but not IFP.
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Proposition 2.5. A ring R is right ¢-IFP if and only if R, over R is right
g-IFP for any n.

Proof. Suppose that R is right g-IFP and let

a a2 -+ a\[fb bz -+ bin b b2 bin
0 a - a0 b - by, 0 b - boy
.o . o . | =0withy{ . . | . |#0
0 0 - a 0o 0 --- b 0 0 b
in R,,. If a = 0 then we have
0 a2 ‘- Qip 0 0 --- 1
0 0 - ag, 00 --- 0
. . | Ba .| =0
0 o --- 0 06 0 --- 0

Assume a # 0. By the condition aRb = 0 for some nonzero b’ € R since ab = 0.

So

a a2 - Q1 0 0 v 0 0 aRV
0 a - asm 00 --- 0 00 - 0
o o --- a o0 --- 0 o 0 .- 0

Thus R, is right g-IFP.
Conversely assume that R,, is right g-IFP and let ab = 0 for a,b € R.

a 0 -+ 0 b 0 --- 0
0 a -+ 0 0O b --- 0
Then ) . .. = 0 and so we have AR,B = 0 for
00 --- a 00 --- b
a 0 - 0
0 a - 0
some nonzero B € R, by the condition, where A = | . . | . |. Say
0 0 a
b bz -+ bin
0 b - by,
B=1. . ) . |. If b 0 then aRb = 0. Next set b = 0 and say that
o o0 .- b

j and k are smallest with respect to the property b;x # 0. Then since AR,B

contains
0 -+ 0 arbjry -+ arbj
0 --- 0 0 . 0
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for all r € R, we also get aRb;, = 0 from AR, B = 0. Thus R is right g-IFP. [

We also have that R,, is 2-primal for any n if and only if R is a 2-primal
ring, with the help of [2, Propositions 2.2 and 2.5].

Proposition 2.6. Let R be a local ring with nilpotent J(R). Then R is g-IFP.

Proof. Let k be smallest with respect to J(R)* = 0. Put ab = 0 for a,b € R
with b # 0. Then a € J(R) and we get aJ(R)*~! = 0, concluding that R is
right g-IFP. Similarly R is left g-IFP. a

Proposition 2.7. Let R be a semiprime right (resp. left) g-IFP ring. Then
every left (resp. right) zero-divisor is a zero-divisor.

Proof. Let rr(a) # 0 for a € R. Since R is right g-IFP, there is a nonzero ideal
I of R such that aI = 0 by Lemma 2.1. Then (IaR)? = IaRIaR = IalaR =0,

but R is semiprime and so Ia = 0, showing [r(a) # 0. The proof of the other
case is similar. O
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